Анодный и катодный процессы с той или иной вероятностью и в той или иной последовательности протекают в любых точках металлической поверхности, где катионы и электроны могут взаимодействовать с компонентами коррозионной среды. Если поверхность однородна, то катодные и анодные процессы равновероятны по всей её площади; в таком идеальном случае К. называют гомогенно-электрохимической (отмечая таким образом отсутствие какой-либо неоднородности в распределении вероятности электрохимических процессов в любой точке поверхности, что, конечно, не исключает термодинамической гетерогенности взаимодействующих фаз). В действительности на металлических поверхностях существуют участки с различными условиями доставки реагирующих компонентов, с разным энергетическим состоянием атомов или с различными примесями. На таких участках возможно более энергичное протекание либо анодного, либо катодного процессов, и К. становится гетерогенно-электрохимической.
Проводимость металла очень высока, и при возникновении избыточного заряда электроны практически мгновенно перераспределяются, так что плотность заряда и электрического потенциал металла меняются одновременно по всей его поверхности независимо от того, в каких её точках электроны освободились после ухода катионов, а в каких захватываются окислителем. В частности, это означает, что от мест, где преимущественно осуществляется анодная реакция, электроны перемещаются в металле к местам протекания катодной. Соответственно раствор вблизи анодных участков принимает избыточный положительный заряд растворившихся катионов, а вблизи катодных заряжается отрицательно в результате захвата электронов растворённым окислителем. В растворе эти заряды не перераспределяются так легко, как в металле. Поэтому с повышением скорости процесса потенциал раствора в непосредственной близости от анодных участков становится всё более положительным, что затрудняет дальнейший выход из металла положительно заряженных катионов, а вблизи катодных участков — более отрицательным, что затрудняет катодный процесс. Иначе это можно представить, как вызванное протеканием тока омическое падение напряжения между прианодным и прикатодным слоями раствора, с учётом которого потенциал металла по отношению к прианодному слою оказывается несколько более отрицательным, а по отношению к прикатодному — более положительным, чем по отношению к объёму раствора. В случаях, когда такое омическое падение напряжения велико (очень высокая плотность тока, низкая электрическая проводимость раствора, большое взаимное удаление катодных и анодных участков), коррозионную систему удобнее представить в виде системы короткозамкнутых микро- или макрогальванических элементов. В остальных случаях при определении средней по площади скорости растворения металла современная теория наряду с такой моделью позволяет также представлять электрохимически гетерогенную поверхность как квазигомогенную. Тогда ей приписывают удельные анодные и катодные характеристики, равные интегрально усреднённым по площади значениям одноимённых характеристик моделируемой гетерогенной поверхности, и графически изображают их на коррозионной диаграмме в виде анодных и катодных поляризационных кривых. Эти кривые показывают, как влияет электродный потенциал на усреднённые по площади и выраженные в единицах (или логарифмах) плотности тока скорости выхода катионов и электронов с данной поверхности в данный электролит. Диаграмма может быть очень сложной, т. к. в реальных системах на форму кривых могут влиять многие факторы, в том числе диффузия окислителя или переходящих в раствор катионов, пассивация металла и различные нарушения пассивного состояния (см. Пассивирование металлов ). На рисунке дана схематическая коррозионная диаграмма для простейшего гипотетического случая, когда ни один из перечисленных факторов не оказывает влияния.
Анодный и катодный процессы, как было отмечено выше, связаны электрическим балансом. Электроны, оставляемые уходящими катионами, сообщают металлу отрицательный заряд, который затрудняет выход катионов в раствор, но одновременно ускоряет катодный процесс. Последний, в свою очередь, способствуя уменьшению отрицательного заряда металла, самозатормаживается, но облегчает протекание анодной реакции. Т. о. происходит саморегулирование заряда металлической поверхности, являющееся одним из важных элементов механизма установления стационарного потенциала К. (jст ), при котором катодная (К ) и анодная (А ) поляризационные кривые пересекаются (точка S ). Хотя скорость электрохимической К. и зависит от потенциала, однако связь эта далеко неоднозначна, что можно видеть на следующем примере. Если при неизменных анодных характеристиках (кривая А ) на поверхности металла появляются дополнительные активные катоды, то вызванное ими облегчение катодного процесса (описываемого теперь кривой К' ) может привести к ускорению растворения металла (до тех пор, пока не будет достигнута плотность тока i*ст ) со сдвигом потенциала в положительном направлении (до j*ст ). Наоборот, при неизменных катодных характеристиках (кривая К ) и появлении дополнительных анодных участков (что соответствует протеканию процесса, описываемого кривой А' ) К. ускоряется (до i**ст ) со сдвигом потенциала в отрицательную сторону (до j**ст ). Однако при пропорциональном облегчении обоих процессов (кривые A' и К' ) значительное ускорение К. (до i***ст ) возможно без изменения потенциала. Более сложные случаи наблюдаются при пассивации, а также нарушениях пассивного состояния.
К. в различных средах, влияние дополнительных факторов (воздействий). Некоторые коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы. Так, выделяют газовую К., т. е. химическую К. под действием горячих газов (при температуре много выше точки росы). Характерны некоторые случаи электрохимической К. (преимущественно с катодным восстановлением кислорода) в природных средах: атмосферная — в чистом или загрязнённом воздухе при влажности, достаточной для образования на поверхности металла плёнки электролита (особенно в присутствии агрессивных газов, например СО2 , Cl2 , или аэрозолей кислот, солей и т. п.); морская — под действием морской воды и подземная — в грунтах и почвах.
К. под напряжением развивается в зоне действия растягивающих или изгибающих механических нагрузок, а также остаточных деформаций или термических напряжений и, как правило, ведёт к транскристаллитному коррозионному растрескиванию, которому подвержены, например, стальные тросы и пружины в атмосферных условиях, углеродистые и нержавеющие стали в паросиловых установках, высокопрочные титановые сплавы в морской воде и т. д. При знакопеременных нагрузках может проявляться коррозионная усталость , выражающаяся в более или менее резком понижении предела усталости металла в присутствии коррозионной среды. Коррозионная эрозия (или К. при трении) представляет собой ускоренный износ металла при одновременном воздействии взаимно усиливающих друг друга коррозионных и абразивных факторов (трение скольжения, поток абразивных частиц и т. п.). Родственная ей кавитационная К. возникает при кавитационных режимах обтекания металла агрессивной средой, когда непрерывное возникновение и «захлопывание» мелких вакуумных пузырьков создаёт поток разрушающих микрогидравлических ударов, воздействующих на поверхность металла. Близкой разновидностью можно считать и фреттинг-К., наблюдаемую в местах контакта плотно сжатых или катящихся одна по другой деталей, если в результате вибраций между их поверхностями возникают микроскопические смещения сдвига.
Утечка электрического тока через границу металла с агрессивной средой вызывает в зависимости от характера и направления утечки дополнительные анодные и катодные реакции, могущие прямо или косвенно вести к ускоренному местному или общему разрушению металла (К. блуждающим током). Сходные разрушения, локализуемые вблизи контакта, может вызвать соприкосновение в электролите двух разнородных металлов, образующих замкнутый гальванический элемент, — контактная К. В узких зазорах между деталями, а также под отставшим покрытием или наростом, куда проникает электролит, но затруднён доступ кислорода, необходимого для пассивации металла, может развиваться щелевая К., при которой растворение металла в основном происходит в щели, а катодные реакции частично или полностью протекают рядом с ней на открытой поверхности.