Литмир - Электронная Библиотека
Содержание  
A
A

  Соч.: Водевили, М., 1937; Девушка-гусар. Петербургские квартиры, в сборнике: Старый русский водевиль. 1819—1849. [Вступ. ст. М. Паушкина], М., 1936.

  Лит.: Лотман Л. М., Драматургия тридцатых — сороковых годов, в кн.: История русской литературы, т. 7, М.— Л,, 1955.

Конидии

Кони'дии (от греческого konía — пыль и éidos — вид), споры бесполого размножения, образующиеся у грибов на особых ветвях грибницы — конидиеносцах. Характерны для сумчатых и несовершенных грибов. Различаются по форме, окраске, числу клеток, происхождению. К. у низших грибов — фикомицетов — модифицированные спорангии .

Кониин

Конии'н, C8 H17 N, основной алкалоид и ядовитое начало болиголова пятнистого. К. — бесцветная жидкость с резким запахом, хорошо растворим в органических растворителях, слабо — в воде. Содержится во всех частях растения, главным образом в плодах и семенах (до 1%). Образуется в клетках растения из остатков уксусной кислоты и аминокислоты лизина. Первый синтезированный природный алкалоид (немецкий химик А. Ладенбург, 1886). Сильный яд нервно-паралитического действия.

Конийский султанат

Кони'йский султана'т, Иконийский султанат, Румский, или Сельджукский, султанат, феодальное государство в Малой Азии в конце 11 — начале 14 вв. Первоначальным центром султаната был Никея, затем Конья (Иконий). К. с. образовался в результате завоевания сельджуками византийских земель в Малой Азии (у арабских и персидских авторов — Рум). Наибольшего расцвета достиг при султане Ала-ад-дине Кей-Кубаде (правил в 1219—36). Главные города К. с. — Конья, Кайсери, Сивас и др. — являлись одновременно центрами ремесла. После 1243 К. с. превратился в вассала монгольских ильханов Ирана. К 1307 распался на мелкие княжества. Одно из них — бейлик (округ) Османа явилось ядром образовавшегося в начале 14 в. Османского государства (см. Турция ).

  Лит.: Гордлевский В. А., Государство Сельджукидов Малой Азии, Избр. соч., т. 1, М., 1960 (имеется подробная библ.).

Кониконхии

Конико'нхии (Coniconchia), группа вымерших организмов. Систематическое положение К. не определено; условно их относят к типу моллюсков. Остатки К. известны в отложениях от кембрия до перми. К. обладали, как правило, конической раковиной, разделённой в начальной части поперечными перегородками на камеры. Размеры раковин от нескольких мм до 15 см. Одни учёные считают К. классом с надотрядами тентакулитов и хиолитов , другие рассматривают их как самостоятельные классы. Роды и виды К. — важные руководящие формы для подразделения и сопоставления отложений от кембрия до девона.

  Лит.: Основы палеонтологии. Моллюски-головоногие, II, М., 1958.

Кониси Юкинага

Ко'ниси Юкинага (около 1556, Сакаи, — 1600), полководец феодальной Японии. Сын богатого купца. Участвовал в объединительных войнах на стороне полководца и государственного деятеля Хидэёси Тоётоми. Командовал одной из японских армий во время агрессивных походов против Кореи в 1592—93, 1597—1598. В борьбе за власть, вспыхнувшей после смерти Тоётоми, выступил против Иэясу Токугава , но в битве при Секигахара (1600) был разбит и казнён.

Конисский Григорий

Кони'сский Григорий (в монашестве — Георгий) [20.11(1.12).1717, Нежин, ныне Черниговской области, — 13(24).2.1795, Могилёв], украинский писатель, церковный деятель. Из дворян. Окончил Киевскую духовную академию в 1744, принял монашество. В 1751—55 ректор академии, профессор, архиепископ белорусский (с 1783). Боролся против унии (см. Брестская уния 1596 ) за православную церковь и присоединение Белоруссии к России. Сторонник веротерпимости. К. принадлежит много проповедей («слов»), стихотворений, речей, исторические сочинения, курсы философии, богословия, пиитики. Длительное время К. ошибочно считали автором «Истории руссов», написанной Г. А. Полетикой. Соч. К., впервые изданные в Петербурге в 1835 в 2 тт., были одобрительно встречены А. С. Пушкиным.

  Лит.: Колосов Н. А., Георгий Конисский, архиепископ белорусский, М., 1895; УкраЇнськi письменники. Бio-бiблioграфiчний словник, т. 1, К., 1960.

Кониферин

Конифери'н, C16 H22 O8 ×H2 O, фенольный гликозид . Впервые выделен из сока хвойных растений (Coniferales); содержится в тканях многих растений. При ферментативном гидролизе К. распадается на глюкозу и конифериловый спирт — один из исходных продуктов при биосинтезе лигнина .

Коничев Константин Иванович

Ко'ничев Константин Иванович [13 (26).2.1904, деревня Поповская, ныне Усть-Кубинского района Вологодской области, — 2.5.1971, Ленинград], русский советский писатель. Член КПСС с 1926. Окончил Литературный институт имени М. Горького (1940). Участник Великой Отечественной войны 1941—45. Автор книг: «Тропы деревенские» (1929), «Лесная быль» (1934), «К северу от Вологды» (1954), «В году 30-ом» (1964) и др., цикла историко-биографических повестей «Повесть о Федоте Шубине» (1941—51), «Повесть о Верещагине» (1956), «Повесть о Воронихине» (1959—64), «Русский самородок. Повесть о Сытине» (1966). Основные темы произведений К.— русский Север, судьбы его исторических деятелей. Награжден 2 орденами, а также медалями.

  Соч.: Песни Севера, частушки, пословицы, загадки, 2 изд., [Архангельск], 1955; Из жизни взятое. [Вступит. ст. В. Гуры], Вологда, 1964.

Лит.: Фрумкин Л., Характер русского северянина. (О творчестве Константина Коничева), «Север». 1969, № 12.

Коническая поверхность

Кони'ческая пове'рхность (математика), то же, что конус .

Конические проекции

Кони'ческие прое'кции (нормальные), картографические проекции , в которых параллели изображаются концентрическими окружностями, меридианы — ортогональными им прямыми. В К. п. искажения не зависят от долготы. Особо пригодны для территорий, вытянутых вдоль параллелей. Карты всей территории СССР часто составляются в равноугольных и равнопромежуточных К. п.

Конические сечения

Кони'ческие сече'ния, линии, которые получаются сечением прямого кругового конуса плоскостями, не проходящими через его вершину. К. с. могут быть трёх типов:

  1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая — эллипс ; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.

  2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая — парабола , целиком лежащая на одной полости.

  3) Секущая плоскость пересекает обе полости конуса; линия пересечения — гипербола — состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.

С точки зрения аналитической геометрии К. с.— действительные нераспадающиеся линии второго порядка .

В тех случаях, когда К. с. имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путём перенесения начала координат в центр) к виду:

a11 x2 +2a12 xy + a22 y2 = a33 .

334
{"b":"106098","o":1}