Литмир - Электронная Библиотека
Содержание  
A
A

  Водоохлаждаемая фурма для подачи кислорода в К. изготавливается обычно из трёх стальных труб, вставленных одна в другую. Нижняя часть фурмы заканчивается наконечником (соплом) из красной меди, через который кислород поступает в К. Во время продувки в К. образуется значительное количество отходящих газов. Для использования тепла отходящих газов и очистки этих газов за каждым К. устанавливают котел-утилизатор и установку для очистки газов. Управление конверторным процессом осуществляется с помощью счётно-решающих машин, в которые вводится информация о показателях процесса (состав и количество чугуна, лома, извести, отходящих газов, температура пламени и др.). Полученная после продувки жидкая сталь выпускается из К. в сталеразливочный ковш, установленный на электрифицированной дистанционно управляемой самоходной тележке и передаётся в разливочное отделение.

  В цветной металлургии применяют К. главным образом цилиндрической формы. Диаметр такого К. 3—4 м, длина 6—9 м, ёмкость 40—100 т. Стальной корпус К. футеруют магнезитовым кирпичом и покрывают слоем магнезита . Заливка штейна, загрузка флюсов, оборотных материалов, концентрата, а также слив шлака и жидкого металла производится через горловину К. Мелкий материал может загружаться через отверстие в торцевой стенке с помощью пневматической пушки. Фурмы для подачи воздуха расположены снизу К. К. имеет поворотный механизм для выпуска жидких продуктов. См. также Конвертирование .

  Лит.: Марцинковский Д. Б., Погребинский В. А., Конвертерные цехи большой производительности, М., 1961; Афанасьев С. Г., Краткий справочник конверторщика, М., 1967; Майоров А. И., Кислородные конвертеры большой ёмкости в СССР и за рубежом, М., 1968.

  С. Г. Афанасьев.

Большая Советская Энциклопедия (КО) - i008-pictures-001-299480067.jpg

Рис. 2. Кислородный конвертер: 1 — корпус; 2 — днище; 3 — опорные подшипники; 4 — шлем.

Большая Советская Энциклопедия (КО) - i010-001-258306534.jpg

Рис. 1. Бессемеровский конвертер: 1 — корпус; 2 — пустотелая цапфа; 3 — патрубок; 4 — воздушная коробка; 5 — редуктор; 6 — днище; 7 — фурмы; 8 — горловина.

Конвертерное производство

Конве'ртерное произво'дство, получение стали в сталеплавильных агрегатах — конвертерах путём продувки жидкого чугуна воздухом или кислородом. Превращение чугуна в сталь происходит благодаря окислению кислородом содержащихся в чугуне примесей (кремния, марганца, углерода и др.) и последующему удалению их из расплава.

  Бессемеровский процесс — первый массовый способ получения жидкой стали открыл английский изобретатель Г. Бессемер в 1856. Основной недостаток процесса — невысокое качество металла за счёт не удалённых при продувке вредных примесей (фосфора и серы). Для выплавки бессемеровских чугунов нужны очень чистые по содержанию серы и фосфора железные руды, природные запасы которых ограничены. Англичанин С. Томас в 1878 вместо кислой динасовой футеровки бессемеровского конвертера применил основную футеровку, а для связывания фосфора предложил использовать известь. Томасовский процесс позволил перерабатывать высокофосфористые чугуны и получил распространение в странах, где железные руды большинства месторождений содержат много фосфора (Бельгия, Люксембурги др.). Однако и томасовская сталь была низкого качества. В 1864 французский металлург П. Мартен разработал процесс получения стали в мартеновской печи (см. Мартеновское производство ). В отличие от конвертерных способов получения стали, мартеновский процесс отличался малой требовательностью к химическому составу исходного материала, позволял переплавлять большое количество стального лома; качество мартеновской стали было выше конвертерной. К середине 20 в. мартеновским способом изготовлялось около 80% всей стали, производимой в мире.

  В 1936 советский инженер Н. И. Мозговой впервые использовал для продувки чугуна в конвертере кислород , что коренным образом изменило технологию К. п. Металл, получаемый кислородно-конвертерным процессом , по качеству стал равноценным мартеновской стали, себестоимость стали снизилась на 20— 25%, производительность увеличилась на 25—30%.

  Лит. см. при ст. Кислородно-конвертерный процесс .

  С. Г. Афанасьев.

Конвертерный чугун

Конве'ртерный чугу'н, чугун, предназначенный для передела в сталь в конвертерах ; см. Передельный чугун .

Конвертирование

Конверти'рование штейна, окислительный пирометаллургический процесс переработки жидких штейнов медного, никелевого и свинцового производств с целью получения чернового металла или сульфида цветного металла. К. осуществляется в конвертере путём продувки расплавленного штейна воздухом или техническим кислородом . При прохождении струи воздуха через расплав в первую очередь окисляются сульфиды тех металлов, у которых сродство к кислороду больше, чем к сере. В штейнах цветной металлургии таким металлом является железо. Образующиеся жидкие окислы железа шлакуются кремнезёмом , добавляемым в конвертер в качестве флюса .

  Содержание SiO2 в шлаке 21—30%, остальное — окислы железа. Конвертерный шлак, имеющий меньшую плотность, чем штейн, всплывает и периодически удаляется из конвертера.

  В медной промышленности процесс К. принято делить на два периода. Первый период заканчивается удалением из штейна всего железа. Оставшийся сульфид меди (белый матт) окисляется во втором периоде кислородом воздуха по реакции: Cu2 S + O2 = 2Cu + SO2 . Конечным продуктом К. медных штейнов является черновая медь.

  В свинцовой промышленности К. подвергаются медно-свинцовые штейны, содержащие до 30% Cu, 10—20% Pb, 5—15% Zn, 20—40% Fe и 18—22% S. В первом периоде продувки одновременно с сульфидом железа частично окисляются сульфиды цинка и свинца. Окислы этих металлов при взаимодействии с кремнеземом образуют шлак. Часть цинка и свинца переходит в паровую фазу и улавливается в пылеулавливающих устройствах в виде конвертерной пыли. При переработке медно-свинцовых штейнов получаемая во втором периоде черновая медь отличается повышенным содержанием свинца (до 4%).

  В никелевом производстве получение чернового металла из никелевых штейнов затруднено. Это связано с тем, что после удаления всего сернистого железа в первом периоде протекание реакции Ni3 S2 + 2O2= 3Ni + 2SO2 возможно лишь при температурах выше 1500 °С. температура же в обычных горизонтальных конвертерах не превышает 1400 °С. Поэтому процесс К. никелевых штейнов заканчивается на первом периоде получением так называемого файнштейна (Ni 77— 79%, S 23—21%), при продувке которого техническим кислородом можно получить никель. Вертикальные конвертеры для получения чернового никеля из файнштейна по конструкции напоминают конвертеры чёрной металлургии, кислород подаётся сверху через фурму .

  Конвертерный процесс автогенен. Выделяющегося при окислении сульфидов тепла достаточно не только для поддержания штейна в конвертере в жидком состоянии, но и для расплавления добавляемых в расплав холодных присадок, содержащих цветные металлы. На некоторых заводах в конвертеры грузят рудный концентрат, подвергнутый предварительно окатыванию и сушке. Газы, образующиеся при К., содержат в среднем 3—4% SO2 и частично используются в сернокислотном производстве. Конвертерные шлаки, содержащие до 3% цветных металлов, являются оборотным продуктом и возвращаются в плавильные агрегаты. Конвертерную пыль, содержащую до 20—30% цветных металлов, обычно возвращают в конвертеры.

300
{"b":"106098","o":1}