Литмир - Электронная Библиотека
Содержание  
A
A

  Трёхгранные призмы, из которых состоят однолучевые П. п., часто склеивают прозрачным веществом с преломления показателем (ПП) n, близким к среднему значению ПП обыкновенного (no ) и необыкновенного (ne ) лучей. Клеющими веществами служат канадский бальзам, глицерин, касторовое и льняное масла и др. Во многих П. п. их части разделены не клеем, а воздушной прослойкой, что снижает потери на поглощение при высоких плотностях излучения и даёт ряд преимуществ при работе в ультрафиолетовой (УФ) области спектра. Используют также прослойки из плавленого кварца. Применяют П. п., в которых кристаллическая пластинка вклеена между двумя призмами из стекла, ПП которого близок к большему ПП кристалла (рис. 3 ). В таких П. п. проходит обыкновенный луч, а отражается необыкновенный. Для того чтобы один из лучей претерпевал на границе раздела (склейки) полное внутреннее отражение, выбираются определённые значения преломляющих углов трёхгранных призм и, как правило, определённые ориентации оптических осей кристаллов, из которых они вырезаны. Такое отражение происходит, если углы падения лучей на П. п. не превышают некоторых предельных углов I1 и I2 (см., например, рис. 4 — П. п. Глана — Томсона). Сумма l1 + I2 называется апертурой полной поляризации П. п.; её величина существенна при работе с П. п. в сходящихся пучках излучения.

  В П. п. со скошенными гранями (Николя, Фуко и др.) проходящий луч испытывает параллельное смещение, поэтому при вращении призмы вокруг луча последний также вращается. От этого и некоторых иных недостатков таких П. п. свободны П. п. в форме прямоугольных параллелепипедов: Глана — Томсона, Глана (рис. 5 ), Глазебрука (рис. 6 ), Франка — Риттера (рис. 7 ) и пр.

  Из двухлучевых П. п. наиболее распространены П. п. Рошона, Сенармона, Волластона и некоторые др. (рис. 8 ). Один из двух пропускаемых лучей в П. п. Рошона и Сенармона не меняет своего направления, другой (необыкновенный) отклоняется на угол q (его величина ~5—6°), сильно зависящий от длины волны света: q = (nne ) tga, где a — преломляющий угол трёхгранных призм. П. п. Волластона даёт удвоенный угол расхождения лучей 2q (около 10°), причём при перпендикулярном падении отклонения лучей симметричны; эта П. п. применяется в поляризационных фотометрах , спектрофотометрах и поляриметрах . Угол а в П. п. из исландского шпата близок к 30°, из кристаллического кварца — к 60°.

  Для П. п., как правило, характерны незначительная апертура полной поляризации, высокая стоимость и относительно большие размеры. Они требуют аккуратного обращения, но практически лишены хроматической аберрации , незаменимы при работе в УФ области спектра и в мощных потоках оптического излучения и позволяют получать однородно поляризованные пучки, степень поляризации которых лишь на ~10-5 отличается от 1.

  Лит. см. при ст. Поляризационные приборы , Поляризация света .

  В. С. Запасский.

Большая Советская Энциклопедия (ПО) - i009-001-207699957.jpg

Рис. 5. Поляризационная призма Глана. А В — воздушный промежуток. Точки на обеих трёхгранных призмах указывают, что их оптические оси перпендикулярны плоскости рисунка. Обозначения при лучах те же, что и на рис. 1.

Большая Советская Энциклопедия (ПО) - i009-001-208290318.jpg

Рис. 2. Укороченная поляризационная призма Фуко с воздушным промежутком. Обозначения те же, что и на рис. 1.

Большая Советская Энциклопедия (ПО) - i009-001-228462060.jpg

Рис. 7. Поляризационная призма Франка — Риттера (клей — канадский бальзам): а — вид сбоку; б — вид по ходу луча. Оптические оси кристаллических прямоугольных призм направлены под углом 45° к плоскости рисунка а и под углом 90° к плоскости колебаний электрического вектора необыкновенного луча (его плоскости поляризации).

Большая Советская Энциклопедия (ПО) - i009-001-242615268.jpg

Рис. 4. Предельные углы падения I1 и l2 лучей на поляризационную призму Глана — Томсона. Обозначения при лучах те же, что и на рис. 1. Клеем служит канадский бальзам (апертура полной поляризации e = l1 + I2 = 27,5°) или льняное масло (e = 41°). Угол a = 76,5°.

Большая Советская Энциклопедия (ПО) - i010-001-247107769.jpg

Рис. 1. Призма Николя. Штриховка указывает направление оптических осей кристаллов в плоскости чертежа. Направления электрических колебаний световых волн указаны на лучах стрелками (колебания происходят в плоскости рисунка) и точками (колебания перпендикулярны плоскости рисунка). O и е — обыкновенный и необыкновенный лучи. Чернение на нижней грани призмы поглощает полностью отражаемый от плоскости склейки обыкновенный луч. Клей — канадский бальзам.

Большая Советская Энциклопедия (ПО) - i010-001-254489720.jpg

Рис. 8. Двухлучевые поляризационные призмы: а — призма Рошона; б — призма Сенармона; в — призма Волластона; г — призма из исландского шпата и стекла; д — Аббе. Штриховка указывает направление оптических осей кристаллов в плоскости рисунка. Точки означают, что оптическая ось перпендикулярна плоскости рисунка. Стрелки и точки на лучах указывают направления колебаний электрического вектора.

Большая Советская Энциклопедия (ПО) - i010-001-262133390.jpg

Рис. 6. Поляризационная призма Глазебрука. Обозначения при лучах те же, что и на рис. 1. При склейке в плоскости АВ канадским бальзамом угол a = 12,1°, льняным маслом — 14°, глицерином — 17,3°. Оптические оси кристаллов обеих прямоугольных призм перпендикулярны плоскости рисунка (помечено точками).

Большая Советская Энциклопедия (ПО) - i010-001-265587542.jpg

Рис. 3. Линейный поляризатор (поляризационная призма) из стекла и исландского шпата. Точки в прослойке шпата указывают, что его оптическая ось перпендикулярна плоскости рисунка. Остальные обозначения те же, что и на рис. 1.

Поляризация

Поляриза'ция (франц. polarisation, первоисточник: греч. pólos — ось, полюс) биоэлектоическая, возникновение двойного электрического слоя на границе между наружной средой и содержимым живой клетки; при этом наружная поверхность клетки в состоянии покоя заряжена положительно по отношению к её содержимому, имеющему отрицательный заряд.

  Постоянная биоэлектрическая П. обусловлена особенностями строения биологических мембран, а также неравномерным распределением неорганических ионов (в первую очередь К+ , Na+ , Cl- ) в содержимом клетки и в окружающей её среде (электрохимические градиенты). Потенциал покоя — непосредственное следствие П. У-большинства живых клеток концентрация ионов К+ в протоплазме в 20—50 раз выше, чем во внеклеточной жидкости. Поверхностная мембрана этих клеток в состоянии покоя более проницаема для ионов К+ , чем для др. катионов. Поэтому ионы К+ , диффундируя из клетки наружу, приводят к накоплению избытка положительных зарядов на наружной стороне мембраны, на внутренней же образуется избыток отрицательных зарядов (см. Мембранная теория возбуждения ). Для ионов Na+ , Ca2+ и Cl- мембрана в покое мало проницаема, но в активированном состоянии происходит избирательное повышение проницаемости для каких-либо из этих ионов, что приводит к изменению П. (см. Биоэлектрические потенциалы ). Так, мембрана возбуждённого участка нерва становится на короткое время проницаемой для ионов Na+ , вход которых в клетку приводит к деполяризации мембраны. Если эта деполяризация достигает критического уровня, возникает потенциал действия . Нисходящая фаза потенциала действия, в течение которого П. мембраны возвращается к уровню покоя, называется фазой реполяризации мембраны. При увеличении потенциала покоя выше нормального уровня происходит гиперполяризация мембраны. Относительное постоянство уровня П. живой клетки обеспечивается постоянством электрохимических градиентов, что, в свою очередь, поддерживается работой ионных насосов (см. «Натриевый насос» ), затрачивающих энергию на противоградиентный перенос ионов через мембрану (см. Активный транспорт ионов ).

290
{"b":"106219","o":1}