Умные роботы делают руки умнее
Комбинация умных рук и умных роботов со временем становится все более заметной, и не только потому, что машины постоянно становятся умнее (как мы рассказывали ранее в этой книге), но умнеет и человек. Отличным примером служит один из наиболее широко известных моментов этих новых взаимоотношений человека и машины, когда чемпион по го Ли Седоль соревновался с интеллектуальной машиной AlphaGo от Google.
В их матче в 2016 году AlphaGo сделал ход – ход 37, – удививший Седоля (и всех комментаторов-экспертов), который, по сути, был расценен командой Google как ошибка. Оказалось, однако, что это победный ход во второй игре в серии из пяти игр. В четвертой игре ход сделал Седоль – ход 78, – который удивил AlphaGo, поскольку, как говорит об этом Демис Хассабис (Demis Hassabis), сооснователь DeepMind – команды, сотрудничающей с Google, «AlphaGo не думал, что человек когда-нибудь так сыграет»3. С этим 78-м ходом игру выиграл Седоль.
AlphaGo продолжал выигрывать в решающей пятой игре, и Седоль позднее вспоминал, что не смог бы снова сделать тот 78-й ход, хотя и играл против AlphaGo: машина «открыла глаза» новым способам ведения игры. Опыт Седоля при этом все-таки был расширен: через это взаимодействие с машиной он стал умнее и сложнее.
Машина как коуч
Парируя той точке зрения, что машины заполнят большой сектор устаревшей буржуазной рабочей силы, Макс Янкелевич (Max Yankelevich), основатель и генеральный директор разработчика умной автоматизации процессов WorkFusion, видит впереди намного более сложное будущее. Как он сказал нам: «Комбинация человек плюс ИИ дает в результате три… Наши клиенты не стремятся избавиться от людей; на самом деле они хотят подтолкнуть их выше, к более результативной деятельности, которая требует большего напряжения ума. Они видят в ИИ возможность продвинуть своих людей выше в этой интеллектуальной массе, где они дают предприятию больший результат. Вот как мы видим эволюцию вещей».
Так как AlphaGo сделал Ли Седоля более опытным игроком в го, машины, работающие на передовой на предприятиях бок о бок с нами, сделают нас лучше в том, что делаем мы. И не только в элитной работе, такой как доктора и юристы, но и в более прозаичных, негламурных должностях, занимаемых людьми в миллионах офисах по всему миру: в работе по обработке заявлений на выплату страховки и клиентских жалоб, в работе по доставке прибора А из пункта В в пункт С.
Программное обеспечение WorkFusion, используемое предпринимательскими фирмами для дигитализации процессов, таких как адаптация клиента, проведение сделки и обработка заявлений, автоматизирует широкий круг рутинной интеллектуальной работы через ротобизацию и машинное обучение – в WorkFusion это называют «когнитивная автоматика». Роботизированное оборудование автоматизирует работу, выполняющуюся исключительно по правилам: работа с унаследованными приложениями, перемещение данных из одной системы в другую; когнитивная, или познавательная, автоматика берется и за оценочную работу, имеющую дело с более сложными, неструктурированными данными. Программное обеспечение учится с помощью исторических данных и «наблюдая», как в реальном времени работники категорируют и извлекают главное из неструктурированных данных. Сначала люди контролируют результаты работы WorkFusion, но по мере того, как число повторяющихся процессов растет с сотен до тысяч, программное обеспечение может начинать выступать автономно и автоматически выделять исключения, которым требуется полноценное человеческое суждение. Как говорит Янкевич: «Перевод в автоматический режим касается объемной, рутинной работы, в то время как человек обращается к более интересной и более сложной работе, снижая ее общий объем».
Видение Янкевича однозначно заключается в том, чтобы «держать людей в курсе» и применять силу машин для того, чтобы создать работу более ценную как для организации, так и для самих людей. Янкевич твердо верит, что умная автоматизация процесса – корень не только снижения расходов, но и улучшения качества работы. Янкевич описывает это как «работу, требующую человеческого прикосновения, по-настоящему экспертную работу, работу, требующую множества разных и сложных процессов и интеллектуально стимулирующую, ту, что позволяет нам, как обществу, становиться более продуктивными в творческих областях».
Для многих история автоматизации, ИИ и машинных центров – история только о «разрушении», однако реальным наследием, освобожденным машинами, будут и «креативные» силы. В противоположность тому, как это происходит в мире тенниса, где тренер Энди Мюррея (Andy Murray), бывший номер один в мире Иван Лендл (Ivan Lendl), с трудом доносит свои идеи кому-то с рейтингом 3.0 в местном клубе, алгоритмы в умных программных продуктах для автоматизации процессов гораздо более демократичны, помогая повысить уровень сотрудника на любой позиции. ПО WorkFusion с помощью автоматизации выполняемой работы может поднять как юриста-выпускника Гарварда, так и клерка, получившего образование в местном колледже, позволив им сосредоточиться на более ценной деятельности. Это настоящая сила в мире, где машины становятся умнее не для того, чтобы заменить нас, а для того, чтобы помочь подняться выше по ранжированию, в большие трудности и за большие деньги.
Эти взаимоотношения человека/машины наряду с дополнением, с приданием нового импульса работе человека, которые она создает, могут также быть поняты через работу инженеров Amazon, использующих способности машин к самообучению, развиваемых в рамках Amazon Web Services (AWS).
Др. Мэтт Вуд (Matt Wood), главный менеджер по стратегии развития товара в AWS, объяснил нам: «Мы провели небольшой внутренний тест, где два старших разработчика стараются угадать пол клиента только по имени. Традиционно в такой ситуации вы бы просто взглянули на данные переписи и сказали: «Ну, большинство людей с именем Мэтт оказываются мужчинами». На этом вы бы строили свои догадки». Инженеры обнаружили, что там существовало несколько серых областей: «Если речь идет о Пэт или Сэм, то, основываясь на имени, определить пол уже сложнее», – говорит Вуд. За решение этой задачи взялись два инженера, которые с нуля выстраивали алгоритм. По словам Вуда, у них ушло почти два месяца на создание ПО, его проверку и отработку моделей, но через два месяца они получили точность определения более 90%. «Мы подумали: “Хорошая работа”, – рассказывает Вуд. – Затем мы взяли одного разработчика из другой команды, дали ему созданный ранее внутренний сервис машинного обучения AWS, и они тоже смогли прийти к тому же уровню точности, выше 90%, однако им удалось это сделать за несколько дней».
Вуд считает, что «в свое время большая часть задач будет решаться с помощью компонента машинного обучения. Он сыграет свою роль в очень, очень большом количестве случаев и трудностей, с которыми сталкиваются клиенты».
Вуд предсказывает, что со временем с платформами машинного обучения будут взаимодействовать все больше экспертов. В объединении умных людей с системами, у которых есть большой (и быстро расширяющийся) набор данных, эти дополненные, расширенные личности будут создавать ценность, которая со временем будет расти и становиться более сложной.
Как говорит Вуд: «У вас есть это классное колесо фортуны из разработки, метода использования, создания данных и решения проблемы, которое снова приходит к созданию новых данных, затем снова идет к разнообразным способам, которые вы можете выбрать для оптимизации конкретных подходов или методов, и этот цикл повторяется снова и снова».
Использование новых инструментов для расширения, углубления своей работы поможет достичь следующего уровня человеческой результативности. И честно говоря, нам есть что расширить.
Расширение – это технология на службе человека
Один важный, но часто упускаемый из виду аспект расширения работы – распознать отношения, существующие между расширением работы/роли/процесса и ее автоматизацией. Во многих случаях автоматизация и расширение существуют симбиотически, по принципу две-стороны-одной-монеты. Сторону, которую эффективно расширять, человек должен автоматизировать. У учителя есть возможность «переключиться» на класс, только если он автоматизировал какие-то аспекты обучающих рабочих процессов. Если учитель не автоматизировал урок, то не сможет в течение дня выделить время на то, чтобы уделить внимание конкретным потребностям каждого ученика. Если банкир не автоматизирует создание Ореола кодов клиента, то потратит время, которое мог бы провести за созданием человеческих отношений с клиентом, перелопачивая информацию, необходимую для прояснения ситуации клиента. Автоматизация – не враг расширения, по сути, она играет центральную роль в этом расширении.