Литмир - Электронная Библиотека
Содержание  
A
A

Многие из этих новостных историй не просто обратный вывод данных, как прогноз погоды или биржевые новости. Автоматизированные платформы воспроизводят нюансы языка, вплетая их в настоящий нарратив – увлекающий, дружелюбный, свежий, вдохновляющий… ну то есть – человеческий. Взгляните, например, на начало статьи о бейсбольной игре в местной средней школе в Теннесси:

Мэтт МакДэниел из Oak Ridge Wildcat закручивает два хомера, что приводит к победе над Bearden со счетом 10:8.

Вторник в Фаррагутской средней школе стал отличным днем для Мэтта МакДэниела, который выполнил два хоум-рана и тем самым принес Wildcats победу над командой Bearden со счетом 10:8 в семи иннингах7.

Мы могли бы продолжать, но вы, наверное, уже уловили суть: все это было написано интеллектуальной системой. Язык вполне разговорный и согласуется как с местной культурой, так и бейсболом: «закручивает два хомера», «выполнил два хоум-рана».

Используя программных роботов-«журналистов», новостные компании автоматизировали некоторые базовые процессы стандартной репортерской деятельности, в том числе сбор данных, их обобщение, написание и распространение. Как только результаты бейсбольных матчей загружаются в программу-бота, единственное, что остается по-настоящему «сделать», – это дать системе задание выполнить письменный текст и отправить его по нужному дистрибьюторскому каналу (который, кстати, тоже будет автоматизированным). За последние несколько лет таким способом было произведено более десяти тысяч статей о низшей бейсбольной лиге8.

Будет ли автоматизация новостей распространяться на такой жанр, как журналистские расследования, выходящие на первых страницах The New York Times и The Wall Street Journal? Наверное, не скоро (хотя программы-боты, несомненно, расширят возможности ведущих расследования журналистов). Однако она уже оказала серьезную помощь этой индустрии, находящейся под серьезным ценовым давлением, в поиске более высоких уровней эффективности, предоставив потребителям и дополнительные ценности.

Дело здесь не только в автоматизировании журналистики. Этот тренд – применение автоматизированных технологий для снижения стоимости и повышения эффективности – проявил себя практически в каждой отрасли. Нравится вам это или нет, конкуренты на другой стороне улицы скоро получат значительную выгоду от автоматизации основных процессов. Если не поторопиться, ваша структура затрат скоро не сможет устоять. Кроме того, сэкономив на автоматизации, вы потом заплатите за надвигающиеся цифровые инновации. К счастью, большинство из нас уже приготовилось к разбегу.

Мы уже какое-то время проводим автоматизацию с помощью цифры

Способ, которым Narrative Science или Automated Insights автоматизируют журналистику и другую деятельность, связанную с написанием текстов, таких как биржевые новости, очень сложен и представляет собой новые горизонты робототехники. Однако давайте вспомним еще раз, что мы уже довольно давно прибегаем к автоматизации и, как и в случае с ИИ, часто даже не замечаем этого.

Вспомните свое последнее посещение аэропорта. Двигаясь по шоссе, вы, вероятно, пересекали пункт взимания платы за пользование дорогой. Въехав на парковку, получили парковочный талон. В терминале получили билет и проверили багаж в интерактивном терминале. Направляясь к выходу, остановились и сняли наличные деньги на поездку.

Еще пару десятков лет назад во всех этих местах работали люди: оператор пункта приема платежей, смотритель парковки, сотрудник на регистрации и кассир в банке. И многие (хотя и не все) эти рабочие места были вытеснены автоматизацией (другие были дополнены технологией, о чем мы поговорим позже), и как потребитель вы, вероятно, этим довольны.

Путь от дома до аэропорта занял как минимум на полчаса меньше, чем во времена, предшествующие автоматизации. И скучает ли кто-нибудь в действительности об операторах, принимающих платежи, – этих несчастных малых, что должны были по восемь часов в день стоять на холоде в металлической коробке: отсчитывающих сдачу, тяжело вздыхающих и все равно создающих для всех нас длинные очереди? Даже сам бывший оператор не хочет, чтобы его работа вернулась обратно.

С новой машиной мы переходим черту, за которой сможем сделать «интеллектуальные» процессы по-настоящему интеллектуальными. Новые волны автоматизации поднимаются повсюду вокруг нас, однако в отличие от электронного сканера на шоссе, они настолько искусные и мощные (как в робожурналистике), что мы их можем даже не заметить.

Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - i_023.jpg

Рисунок 7.3. Автоматизация, знакомая нам из повседневной жизни

Программное обеспечение должно поглотить ваши основные операции

Где именно найдет себе место автоматизация в вашей компании? Лучшая область – коренные, основные операции, удаленные от клиентов. Легче всего провести автоматизацию и значительно сократить расходы, прячущиеся в повседневных процедурах, в так называемых операционном отделе, или бэк-офисе, и в контрольном подразделении – мидл-офисе.

Ваш операционный отдел выполняет работу, необходимую любой корпорации: информационные технологии, финансы, человеческие ресурсы, управление эксплуатацией оборудования, административные функции и так далее. Деятельность контрольного подразделения охватывает специализированные для конкретной отрасли операции, проходящие через цепочку формирования ценности: обработка заявлений в страховании, управление логистикой в ритейле, проведение расчетов в банках.

Что, если бы вы могли осуществлять эти функции за половину стоимости и с двойной отдачей? С постоянным улучшением и контролем качества? И со всеми аспектами, с каждой транзакцией, полностью инструментированной и записанной? С новой машиной вы это сможете.

Как и в журналистике, эти области вашего бизнеса в своей сути содержат информационную логистическую цепь, где собираются, обрабатываются, преобразовываются и распространяются данные. Список кандидатов, как показано на рисунке 7.4, настолько обширен, насколько и удивителен.

Существуют специальные интеллектуальные системы автоматизации для каждой из этих областей, и они готовы к внедрению: AiCure для изучения клинических данных, Talla для отдела кадров, NetAngels для отчетов об урегулировании споров в банковских услугах. Кевин Келли (Kevin Kelly), основатель журнала Wired, зашел еще дальше, сказав, что бизнес-планы следующих десяти тысяч стартапов Кремниевой долины легко предсказать: «Возьми Х и добавь ИИ»9.

Приведенные ниже списки могут быть полезны, поскольку охватывают все области, где для автоматизации может быть применена новая машина, но как вам найти вашего лучшего кандидата? В конце концов, те же самые процессы от одной к другой компании могут быть структурированы очень по-разному. Потолок для одного человека – пол для другого.

Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - i_024.png
Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - i_025.png

Рисунок 7.4. Возможности потенциальной автоматизации процессов

TriZetto автоматизировал бизнес оказания медицинских услуг в США

Отрасль здравоохранения США, стоившая в 2014 году три триллиона долларов, – одна из самых крупных и самых сложных отраслей в мире10. Также здравоохранение одна из наиболее созревших отраслей для связанных с автоматизацией реформ. По некоторым оценкам, одна треть из всех расходов на здравоохранение в США тратится абсолютно напрасно11.

Компания TriZetto была основана двадцать лет назад и располагается в Колорадо, ее задача – принести силу автоматизации в эту разлаженную систему. Будучи одним из первых разработчиков программного обеспечения как услуги, TriZetto стала пионером идеи применения мультиаренды и платформ для управления процессами, которые обеспечивают функционирование крупнейших плательщиков на рынке здравоохранения (страховых компаний) и провайдеров услуг (больницы и многопрофильные медицинские группы). В 2015 году TriZetto обрабатывала 60% заявок на медицинские услуги, и тогда же компанией был приобретен Cognizant за два миллиарда семьсот миллионов долларов.

Еще в начале пути руководство TriZetto поняло, что настоящая ценность предложения компании в использовании программного обеспечения для автоматизации объемной, рутинной работы на стороне плательщика (например, те многие шаги, которые предпринимаются за сценой поставщиками медицинских страховых услуг США). Учитывая, что законодательство США требует, чтобы как минимум 85% средств было потрачено на медицинские услуги и не больше 15% на администрирование, чтобы быть конкурентоспособными, поставщики должны максимально снижать расходы, заботясь при этом о сохранении качества. Для этого TriZetto создала и закупила разнообразное программное обеспечение, чтобы автоматизировать и улучшить многие рабочие процессы операционного подразделения страховых компаний, такие как планирование оказания услуг, управление оказанием медицинских услуг, оплаты и так далее.

Лоуренс Бридж (Lawrence Bridge), старший вице-президент по стратегии и корпоративному развитию, объяснил нам, что автоматизация не только снижает расходы, но и позволяет получать лучшие результаты медобслуживания. «Инструменты, которые мы выводим на рынок, такие как «Автоматизация производительности здравоохранения» (Healthcare Productivity Automation (HPA), способны заметно уменьшить количество ручных операций», – сказал он.

Операционные результаты – одним словом, ошеломляющие. «До» автоматизации, по словам Бриджа, сто двадцать человек обрабатывали заявления, сидя в зале с перегородками, работали с кучей бумаг и во многом устаревшими IT-системами. В картинке «после», сложившейся уже через несколько недель, один человек работает с интеллектуальной системой, обрабатывая тот же объем заявлений. «Сейчас команда работает над тем, чтобы расширить возможности автоматизации до клиентских служб и другой работы, которая традиционно требовала человеческого участия, включая, со временем, и собственно медицинскую помощь», – сказал Бридж.

В работе TriZetto автоматизация не означает немедленной потери работы. В то время как некоторые рабочие места, конечно, пропадут, другие будут передислоцированы в ответ на рост запроса на широкий круг новых услуг. Здравоохранение в Соединенных Штатах двигается от централизованной модели в сторону более ориентированной на потребителя. Рост числа застрахованных в связи с «Законом о доступном медицинском обслуживании», а также растущая потребность в медицине в связи со старением населения выливается в общий рост запроса на медицинские услуги. Этот запрос требует, чтобы преуспевали как люди, так и машины. «Вы никогда не сделаете этого без автоматизации. На это потребовался бы миллион человек, – говорит Бридж. – Но сейчас у вас есть правительственные указы, сжимающие и формирующие кривые расценок и затрат. У вас созревающая безумными темпами технология… Приходится управлять идеальным штормом… это модель массовой персонализации в сфере плательщиков за услуги здравоохранения».

Даже если вы не принадлежите бизнесу плательщиков за медицинские услуги, можете взять у TriZetto несколько главных уроков для своей компании.

Фокусируйтесь на объемных коренных для вашего бизнеса процессах. TriZetto применяет программное обеспечение для рутинной, повторяющейся работы в контрольном подразделении, в мидл-офисе плательщиков за услуги здравоохранения. Нет буквально ни одной компании, из тех, с кем мы работали, что не могла бы применить тот же подход. Возможности автоматизации есть у каждой компании. Наша задача сейчас – выяснить, где можно применить интеллектуальные системы для заштампованных, объемных и часто отупляющих бизнес-процессов. (Больше об этом – далее.)

Будьте дерзкими. Руководители TriZetto создают инструменты для автоматизации работы, поэтому знают, что реалистично, а что теоретично. Их первое правило – рассчитывать на 50% автоматизации существующих процессов. Таргетирование 4–5% просто нецелесообразно. Если вы беретесь за дело, нацелившись менее чем на 25%, то метите слишком низко.

Найдите модели. Автоматизация – игра с масштабом. Компании, хорошо развивающие автоматизацию, достигают наибольших результатов, устраняя индивидуальные решения. Как говорит Бридж: «Компании, которые… действительно хорошо составили свои программы льгот или очень хорошо составили контракты с провайдерами… были как раз теми, кто способен автоматически подстраивать и продвигать стандартизацию… Те, кто исторически побеждал, были способны к стандартизации, воспроизводимости и согласованным процедурам. Глядя вперед, я думаю, все дело будет в использовании цифровых технологий как в административной стороне бизнеса, так и в вопросах стоимости медицинских услуг».

25
{"b":"648216","o":1}