На П. п. применяют электромашинные и статические преобразователи, причём электромашинные установки (двигатель-генераторные агрегаты , одноякорные преобразователи ) повсеместно вытесняются более экономичными и надёжными статическими вентильными преобразователями (см. Преобразовательная техника , Преобразователь частоты ). В состав мощной П. п. входят распределительное устройство переменного тока, машинный зал с преобразовательными устройствами, распределительное устройство выпрямленного (преобразованного) тока, системы охлаждения и вентиляции, а также вспомогательное оборудование.
Лит.: Каганов И. Л., Промышленная электроника, М., 1968; Семчинов А. М., Ртутно-преобразовательные и полупроводниковые подстанции, Л., 1968; Ривкин Г. А., Преобразовательные устройства, М., 1970.
Б. А. Князевский.
Преобразовательная техника
Преобразова'тельная те'хника , раздел электротехники , предметом которого является разработка способов и средств преобразования электрической энергии; совокупность соответствующих преобразовательных устройств. Устройства П. т. изменяют величины переменных напряжения и тока (трансформаторы ), преобразуют переменный ток в постоянный или пульсирующий однонаправленный (выпрямители ), постоянный или пульсирующий однонаправленный ток в переменный (инверторы ), переменный ток одной частоты в переменный ток другой частоты (преобразователи частоты ), изменяют число фаз переменного тока (расщепитель фаз ), изменяют величину постоянного напряжения (регуляторы и преобразователи постоянного напряжения). К устройствам П. т. относят также бесконтактные коммутационные аппараты (см. Коммутатор ).
В зависимости от вида основных элементов силовых цепей преобразовательных устройств последние подразделяют на электромашинные и статические (электромагнитные и вентильные). К электромашинным преобразовательным устройствам относят трансформаторы и электромашинные преобразователи частоты. Трансформаторы применяют в цепях переменного тока везде, где необходимо повысить или понизить напряжение, согласовать выход одной системы со входом другой, ввести гальваническую развязку электрических цепей и т.д. Электромашинные преобразователи (главным образом двигатель-генераторные агрегаты ) применяют преимущественно в автономных системах электроснабжения и в некоторых промышленных электроприводах . Электромагнитные преобразователи применяются редко, преимущественно в качестве делителей и умножителей частоты. Вентильные преобразовательные устройства (ВПУ), основной элемент которых — вентиль электрический , имеют малую инерционность, высокий кпд, хорошие эксплуатационные характеристики, малые массу и габариты, что и обусловило их широкое применение. В высоковольтных ВПУ малой и средней мощности применяют электронные (электровакуумные) вентили. Ионные вентили (газоразрядные и ртутные) устанавливают в ВПУ с резко переменной нагрузкой, в импульсных и специальных ВПУ. Полупроводниковые (ПП) вентили (транзисторы , полупроводниковые диоды и тиристоры ) благодаря компактности, мгновенной готовности к работе, высокому кпд, простоте управления и большому сроку службы к середине 70-х гг. 20 в. практически полностью вытеснили др. вентили в ВПУ массового применения. В низковольтных ВПУ малой и средней мощности (~ 102 —103 вт ) используют транзисторы, работающие в ключевом режиме; в ВПУ большой мощности (~ 105 —108 вт ) применяют силовые ПП диоды и тиристоры. В состав ВПУ, кроме вентилей с охладителями, входят трансформаторы, система управления вентилями, устройства защиты от сверхтоков и перенапряжений, ограничители скорости нарастания напряжения и тока в силовых цепях, коммутирующие устройства, сглаживающие фильтры.
По режиму рабочего процесса различают ВПУ с естественной и искусственной (принудительной) коммутацией . Естественная коммутация может быть реализована в ВПУ как с управляемыми, так и с неуправляемыми вентилями. Искусственная коммутация осуществляется, как правило, в ВПУ с управляемыми вентилями. В ВПУ обоих видов вентиль переводится в состояние высокой проводимости (отпирается) управляющим сигналом при наличии соответствующих потенциалов на его силовых электродах. В состояние низкой проводимости вентиль переводится (запирается) либо в результате снижения напряжения источника питания (в ВПУ с естественной коммутацией), либо дополнительным воздействием коммутирующего устройства (в ВПУ с искусственной коммутацией).
Схема простейшего ВПУ — выпрямителя— показана на рис. 1, а . Изменяя момент отпирания управляемого вентиля, соединённого последовательно с нагрузкой, можно менять среднее значение приложенного к нагрузке выпрямленного напряжения (фазовое регулирование, рис. 1, б ). Изменяя частоту подачи управляющих импульсов, также можно менять среднее значение выпрямленного напряжения (импульсное регулирование, рис. 1,б ). В ВПУ с естественной коммутацией вентиль запирается тогда, когда протекающий через него ток уменьшается до нуля. В ВПУ с искусственной коммутацией вентиль может быть заперт коммутирующим устройством в любой момент времени (кривая изменения напряжения на нагрузке изображена на рис. 1, г ). В выпрямителях такой способ управления режимом работы вентиля по сравнению с фазовым регулированием позволяет повысить коэффициент мощности на входе ВПУ. Для уменьшения пульсаций выпрямленного напряжения обычно используют сглаживающие фильтры на выходе ВПУ. С этой же целью применяют несколько включенных параллельно ВПУ, питаемых переменными напряжениями, сдвинутыми друг относительно друга по фазе.
В ВПУ — преобразователе частоты (рис. 2, а ), подавая управляющие импульсы попеременно на вентили B1 и B2 (для положительной полуволны тока нагрузки) и B3 , B4 (для отрицательной полуволны тока нагрузки) с частотой, более низкой, чем частота питающей сети, можно получить (при естественной коммутации) напряжение, идеализированная форма которого показана на рис. 2, б . В ВПУ с искусственной коммутацией можно получить переменное напряжение, частота которого может быть выше частоты питающей сети (рис. 2, в ) и ограничивается лишь динамическими свойствами вентилей. Для изменения среднего значения выходного напряжения и в этом случае применяется фазовое или импульсное регулирование.
Включая ВПУ в цепь постоянного тока и изменяя с помощью искусственной коммутации продолжительность отпертого и запертого состояний силового вентиля (рис. 3, а ), можно менять среднее напряжение на нагрузке методом широтно-импульсного (рис. 3, б ) или частотно-импульсного (рис. 3, в ) регулирования. Посредством соединения двух ВПУ можно осуществлять преобразование постоянного тока в переменный (инвертирование).
В СССР и за рубежом ВПУ применяют практически во всех областях электроэнергетики. В электропередачах постоянного тока с напряжением 500 кв и более используют выпрямители и инверторы на ртутных и ПП вентилях мощностью по 100 Мва и выше. Мощность ПП выпрямителей для питания электролизных ванн достигает 100 Мва. В электроприводах прокатных станов и блюмингов ещё встречаются ртутные выпрямители мощностью до 30 Мва, но с начала 70-х гг. их всё чаще заменяют ПП выпрямителями. На электрифицированном ж.-д. транспорте применяют выпрямительные и выпрямительно-инверторные установки мощностью до 10 Мва на подвижном составе и до 15 Мва на тяговых подстанциях . В электроприводах металлорежущих станков и текстильных машин используют ПП выпрямители и преобразователи частоты мощностью от 10 ква до 10 Мва. Для питания индукционных электрических печей применяют ПП преобразователи частоты мощностью до 1 Мва. В тихоходных электроприводах шахтных мельниц используют ртутные и ПП преобразователи частоты мощностью 10—15 Мва причём ртутные также постепенно вытесняются ПП.