Литмир - Электронная Библиотека
Содержание  
A
A

Как только мы проделали эти выкладки сначала в дифференциальной форме, затем в ковариантной форме, тогда мы можем использовать нашу теорию для того, чтобы вычислить, например, уравнение движения вещества в звезде. Рассмотренные процессы могут описываться законами, характеризующими непрозрачность, законами рассеяния и т.д. Что не является допустимым, так это использование законов, которые могли бы нарушить сохранение энергии. Мы не можем, например, сказать ”до свидания” тем нейтрино, которые образовались; эти нейтрино теряют энергию из-за наличия гравитационного потенциала, когда они покидают звезду, и последовательная теория не может быть написана, если мы пренебрегаем этим эффектом и влиянием плотности энергии нейтрино на модификацию гравитационного поля. Следовательно, не будет достаточным записать интегральные уравнения диффузии со свободными траекториями с конечным средним, но мы должны следовать уравнениям движения частиц диффузии, которые описываются полными законами, записанными в виде дифференциальных уравнений.

Для того, чтобы сделать выражения для нас проще, запишем здесь подынтегральную функцию в выражении для действия для полей непосредственно через метрический тензор. Наши предыдущие выражения выглядят проще, поскольку они определяются через комбинации метрического тензора, но этот вид часто оказывается более полезным

-𝑅

-𝑔

=-

√-𝑔

2

𝑔

νλ,σ

𝑔

μρ,τ

(

𝑔

νλ

𝑔

στ

𝑔

μρ

-

𝑔

νμ

𝑔

λρ

𝑔

στ

+

+2

𝑔

μν

𝑔

λτ

𝑔

σρ

-2

𝑔

τμ

𝑔

ρσ

𝑔

νλ

)

+

+

-𝑔

𝑔

νσ,μ

(

𝑔

σν

𝑔

ρν

-

𝑔

μν

𝑔

ρσ

)

⎦,ρ

.

(10.3.12)

Последний член есть производная, поэтому его интегрирование в выражении для действия даёт в результате нуль, так что часто мы можем вполне обоснованно выбросить этот член из рассмотрения. Для многих задач будет достаточно записать действие как интеграл от первого члена, обозначаемого как 𝐻, так что

δ𝑆

𝑔

=-

1

2λ²

δ

𝑑⁴𝑥

𝐻

,

где

𝐻

=

-𝑔

𝑔

μν

Γ

ρ

νσ

Γ

σ

ρμ

-

Γ

ρ

μν

Γ

σ

ρσ

.

(10.3.13)

Теперь мы снова готовы построить квантовую теорию, после того как мы имеем теорию с эйнштейновской точки зрения. Эта теория является более полной, чем та, которую мы обсуждали с венерианской точки зрения - мы имеем полный лагранжиан, включающий взаимодействие с материей, и который оказывается правильным во всех порядках. Если мы ограничим наше рассмотрение вселенной, которая содержит только гравитационные поля и скалярную материю, то теория поля получается путём анализа разложений через константу взаимодействия:

𝑔

μν

=

η

μν

+

μν

.

(10.3.14)

В этом лагранжиане члены, которые квадратичны, соответствуют просто пропагаторам, члены, включающие в себя произведения двух φ и одного ℎ, и члены, включающие в себя три ℎ и два φ, соответствуют диаграммам, которые показаны на рис. 10.1. Таким путём мы приходим к предписанию для вычисления амплитуд квантовой механики для движения материи после того, как мы начали рассмотрение с геометрической точки зрения.

Фейнмановские лекции по гравитации - _38.jpg

Рис. 10.1.

Когда придёт время, мы будем пользоваться классической теорией для того, чтобы обсудить движение классических моментов и обсудить космологические вопросы, и мы будем использовать квантовую теорию для того, чтобы вычислить излучение гравитационных волн. Третья альтернативная точка зрения на гравитацию будет представлена после того, как мы обнаружим пути, пользуясь которыми, мы приходим к выводу, что квантово-механическая теория запутывает нас.

Рассматривая эти члены в действии, мы могли бы проанализировать, почему полевое слагаемое может не включать в себя определённую пропорцию Λ величины ∫𝑑⁴𝑥√-𝑔. Эта величина должна быть интегралом, пропорциональным объёму Вселенной, который предположительно есть константа. Получившееся в результате уравнение для такого поля ведёт себя до некоторой степени так же, как если бы гравитоны имели массу и универсальный источник. Рассмотрение предельно большого радиуса действия гравитационных сил делает довольно бессмысленным введение такого слагаемого в действие, даже если бы это приводило к согласованной теории. Уравнения движения, получающиеся из подобного рассмотрения, есть

𝐺

μν

=

Λ𝑔

μν

+

λ²𝑇

μν

.

(10.3.15)

Постоянная Λ известна как ”космологическая постоянная”. Эйнштейн хотел, чтобы Вселенная была замкнутой, так что он определил эту постоянную как значение, которое допускает для такой Вселенной стационарные решения. Позднее Эйнштейн ссылался на введение космологической постоянной как на свою Великую Ошибку; хотя он выбрал её значение равным нулю, он мог бы придти к заключению, что Вселенная могла бы расширяться (или сжиматься). И только позднее Хабблом было открыто, что удалённые галактики движутся от нас и Вселенная расширяется. С того времени, как такое изменение эйнштейновской теории вселенной было введено, космология была ”испорчена” трудностями, связанными с определением значения космологической постоянной. Я согласен со второй гипотезой Эйнштейна и думаю, что значение Λ=0 является наиболее вероятным.

Лекция 11

11.1. Кривизна в окрестности сферической звезды

Теперь мы обратим внимание на нахождение решений уравнений Эйнштейна для некоторых случаев, которые представляют физический интерес. Оказывается, что имеется очень небольшое число наблюдений, связанных с гравитацией, которые не могут быть адекватно объяснены ньютоновской теорией гравитации, и имеются только два решения уравнений Эйнштейна, которые пытались найти.1 Одно из них есть решение, которое описывает гравитационное поле в окрестности звезды (которое должно точно определять отклонение луча света и прецессию орбиты Меркурия). Другое решение связано с описанием распределений массы, близких к однородным, и тем самым, это есть решение, которое представляет интерес при рассмотрении космологических моделей.

1 В настоящее время известно очень много точных решений уравнений Эйнштейна. Например, большое число точных решений можно найти а книге [КШМХ 82*]. (Прим. перев.)

Если мы предполагаем наличие сферической симметрии, мы ожидаем, что метрический тензор будет давать в результате выражение возможно следующего вида для квадрата интервала собственного времени

(𝑑𝑠)²

=

𝐴(𝑑𝑡)²

+

𝐵𝑑𝑟𝑑𝑡

-

𝐶(𝑑𝑟)²

-

71
{"b":"614071","o":1}