Литмир - Электронная Библиотека
Содержание  
A
A

𝐴'

μ

=

𝐴

μ

+

𝑋

.

(3.7.6)

Какое свойство было бы аналогичным свойством тензорного поля? Мы предполагаем, что следующее свойство может быть справедливым: (мы должны быть внимательны для того, чтобы сохранить наши тензоры симметричными) подстановка

ℎ'

μν

=

μν

+

𝑋

μ,ν

+

𝑋

ν,μ

(3.7.7)

в левую часть уравнения (3.7.4) не меняет вид этого уравнения. Доказательство этого факта оставляем в качестве упражнения.

С использованием свойства калибровочной инвариантности, было бы проще получить уравнения для полей в определённой калибровке, что более подходяще, что-то типа лоренцевой калибровки в электродинамике. По аналогии с выбором

𝐴

ν

=

0,

(3.7.8)

мы сделаем следующий выбор (который будем называть условием Лоренца)

μσ

=

0.

(3.7.9)

Таким образом, получаем полевые уравнения, связывающие оператор ”черта” от тензора 𝐓 с полями

μν,σ

=-

𝑘²

μν

=-

λ

𝑇

μν

,

(3.7.10)

или решая ℎμν=(λ/𝑘²)𝑇μν. Немедленно получаем, что амплитуда взаимодействия такого тензора 𝐡 с другим источником 𝑇'μν от λℎμν𝑇'μν в лагранжиане, имеет следующее выражение

λ²

𝑇'

μν

1

𝑘²

𝑇

μν

.

Итак, мы получили в точности то, что мы получили прежде при обсуждении амплитуд непосредственно.

Лекция 4

4.1. Связь между рангом тензора и знаком поля

Мы хотели бы вывести некоторые полезные общие свойства полей, используя свойства лагранжевой плотности. Для гравитационного поля мы определим в данном месте константу взаимодействия и нормализацию плоских волн, которые мы будем отныне использовать. Мы положим

λ

=

8π𝐺

.

(4.1.1)

Здесь, 𝐺 - обычная гравитационная постоянная в естественных единицах (ℏ=𝑐=1); квадратный корень включается в определение с тем, чтобы константа λ стала аналогична заряду электрона 𝑒 в электродинамике, что предпочтительнее того, чтобы подобная величина была пропорциональна квадрату заряда. Множитель √8π служит для того, чтобы исключить не относящиеся к делу множители из большей части полезных соотношений. Для того, чтобы представить плоско-волновые гравитоны, мы будем использовать поля

μν

=

𝑒

μν

exp(𝑖𝑘⋅𝑥)

,

(4.1.2)

с вектором поляризации 𝑒μν, нормализованным таким образом, что

𝑒

μν

𝑒

μν

=

1.

(4.1.2)

Действие, которое описывает общую энергию полей гравитации, вещество и взаимодействие между веществом и гравитонами, имеет следующий вид

𝑆

=

1

2

𝑑𝑉

μν,λ

μν,λ

-2

μλ

μν

(поля)

+

𝑑𝑉

(

μν

𝑇

μν

)

(член взаимодействия)

+

𝑆

𝑀

(материя).

(4.1.4)

Мы можем вывести из лагранжианов полей некоторые важные свойства, например, мы можем понять, почему гравитация притягивает как частицы, так и античастицы, в то время как в электричестве одинаковые заряды отталкиваются, а противоположные притягиваются. Может быть показано, что это свойство связано со знаком лагранжиана, так что если мы изменим знак лагранжиана 𝑆→-𝑆, сила меняет знак. Знак констант взаимодействия λ или 𝑒, или 𝑔 не даёт отличий в теории, так как он появляется в квадрате в любой диаграмме, которая представляет поправку к энергии; всегда вовлечены две вершины. Мы можем поменять знак энергии, соответствующей диаграмме такой, как изображённой на рис. 4.1, только, если мы можем ввести множитель 𝑖 в каждой вершине, например, если мы должны использовать поля 𝑖φ вместо φ.

Фейнмановские лекции по гравитации - _18.jpg

Рис. 4.1.

Тем не менее, поля φ должны представлять соответствующие плоские волны, которые согласовано определены так, что установившиеся волны в большой коробке имеют положительные значения энергии и квантово-механические осцилляторы, которые представляют эти установившиеся волны, ведут себя правильно. Скалярные поля имеют плоские волны

φ

=

𝑎

exp(𝑖𝑘⋅𝑥)

.

(4.1.5)

Амплитуда 𝑎 для квантового поля появляется как координата квантово-механического осциллятора. Если значения кинетической энергии таких осцилляторов, которые пропорциональна 𝑎̇², должны представлять положительные значения энергии, мы обязаны записать нашу теорию последовательным образом, и замена φ→𝑖φ была бы ошибкой.

Для электромагнитных волн именно компоненты в трансверсальном направлении, перпендикулярном направлению распространения, ограничиваются при подобном рассмотрении. Отрицательный знак появляется в связанной энергии потому, что энергия включает в себя пространственные индексы в скалярное произведение двух векторов, которое мы определили как

𝐴

μ

𝐵

μ

=

𝐴₄𝐵₄

-(

𝐴₃𝐵₃

+

𝐴₂𝐵₂

+

𝐴₁𝐵₁

).

(4.1.6)

Знак кулоновских сил связан со знаком временных компонент в лагранжиане. Для гравитационных волн также имеются трансверсальные компоненты, которые заключены в определённые пределы, а при свёртке по двум индексам (или даже по чётному числу индексов) знаки сокращаются, знак временных компонентов ℎ₄₄ противоположен случаю, рассматриваемому в случае электричества, и мы имеем притяжение.

4.2. Тензор энергии-импульса для скалярной материи

Прежде, чем мы сможем вычислять наблюдаемые эффекты и делать предсказания другие, чем закон ”обратных квадратов”, и то, что ”одинаковые тела” притягиваются с силой, пропорциональной его энергии, мы должны определить, как материя определяет тензор давления 𝑇μν. Сначала мы проведём в некоторых деталях вычисления, основанные на простейшем предположении, что материя может быть представлена скалярной функцией φ. Позднее нам понадобится рассматривать функции более высокого ранга; возможно в конце курса мы рассмотрим вещество со спином ½, поскольку такое вещество имеет свойства, существенно отличающиеся от вещества, характеризующегося целым спином. Для исследования свойств материи с целыми значениями спина 1 и 2 требуются более сложные алгебраические преобразования, однако никаких принципиальных нововведений привлекать не требуется.

33
{"b":"614071","o":1}