Литмир - Электронная Библиотека
Содержание  
A
A

– Сорок процентов.

– Вы будете вести плавки в небольшой печи, у вас угар будет больше. Я советую вам принять в расчете не сорок, а пятьдесят процентов, – посоветовал Минкевич.

Так я и поступил.

После отливки первых слитков новой марки образцы были направлены в лабораторию для определения химического состава. Мы ожидали, что содержание молибдена будет в пределах одного процента, но, к своему удивлению, в полученном из лаборатории сертификате в рубрике «молибден» стояло два процента! Я никак не мог понять, откуда они взялись. С листом бумаги, полученным от химиков, я направился к профессору Минкевичу.

– Ну, какие тут исследования можно вести, если у нас даже молибден не могут определять! – в раздражении произнес Минкевич, выслушав мое сообщение о том, как я проводил расчеты и вел плавку. – Одним словом, «химики»!

Мы настолько верили в то, что молибден сильно окисляется в процессе производства стали, что не могли допустить, что совершаем ошибку, принимая в своих расчетах такой высокий угар этого металла.

– Будем считать, что в стали содержится один процент, Другого выхода у нас нет, – решительно заявил Минкевич.

Прошло более двух лет. И вот как-то уже в сталеплавильном цехе крупповского завода в Эссене, наблюдая за ходом процесса выплавки одной из сталей сложного химического состава, содержащей наряду с другими элементами также и молибден, я увидел распоряжение начальника сталеплавильного цеха:

«При расчете шихты исходить из того, что молибден ведет себя так же, как никель, то есть не окисляется». Слова «не окисляется» были подчеркнуты, а внизу стояла подпись – Мюллер.

Я был настолько обескуражен прочитанным мною указанием Мюллера, что немедленно пошел разыскивать Тевосяна.

– Ты только посмотри. Мы во всех наших расчетах принимаем угар молибдена в сорок процентов, а Мюллер исходит из того, что молибден совершенно не окисляется!

– Да, действительно, очень интересное распоряжение. Нам надо внимательно проследить от начала до конца за всем ходом плавки, – сказал Тевосян. – Давай это сделаем вместе, чтобы не упустить чего-либо.

И мы встали к печи с секундомерами в руках. Плавка проводилась дуплекс-процессом – в двух печах. Стальной лом, содержащий отходы молибденсодержащих марок стали, вместе с чугуном загружали в мартеновскую печь, где в процессе плавки окислялись примеси, и сталь с очень низким содержанием углерода в жидком виде передавалась в электропечь, в которой и заканчивался процесс сталеварения.

– Неужели молибден действительно не будет окисляться? – спросил меня Тевосян. – Ведь назначение самого технологического процесса, происходящего в первой печи, и состоит в том, чтобы окислить все примеси, способные окисляться.

– Ты посмотри только на эти шлаки!

Рабочие мартеновской печи в это время забрасывали через загрузочные окна железную руду и скачивали жидкий, черный, железистый шлак.

– Ну, если даже в этих условиях молибден не окисляется, то он действительно не окисляется, и все наши соображения по угару молибдена ни на чем не основаны.

– Чтобы быть полностью уверенными, я думаю, что по ходу плавки следует отбирать пробы и проследить по ним за поведением молибдена, – предложил Тевосян.

Мы уже работали в цехе третий месяц, и нас здесь хорошо знали. Мы сделали, как решили: отбирали пробы и в цеховой химической лаборатории определяли содержание молибдена. От первой и до последней пробы результаты не изменялись, и цифра содержания молибдена в 0,20 процента стояла на каждом листке, получаемом нами из лаборатории.

Мюллера в цехе не было, но в конце смены он появился и, подойдя к нам, спросил, почему мы так интересуемся содержанием молибдена в стали.

Тевосян сказал:

– Мы полагали, что молибден будет сильно окисляться.

Мюллер ответил:

– Несколько лет тому назад и у нас так же многие думали. Дело в том, что в одном из журналов появилась статья о сильном окислении молибдена в процессе производства сталей, содержащих молибден. Автор статьи, вероятно, или плохо знал производство, или же имел в виду не плавку, а другие металлургические операции. Дело в том, что окислы молибдена летучи. Но окислять молибден в процессе плавки очень трудно – в стали содержится много элементов, которые легче и быстрее связывают кислород, нежели молибден. Эта статья, о которой я вам сказал, и на наших заводах повела к недоразумениям, но мы вовремя проверили и установили, что это не так. У нас химики хорошо определяют молибден. Но все-таки я мастерам всякий раз напоминаю о том, что молибден не окисляется.

У нас тоже хорошие химики, подумал я, вспоминая о том, как мы впервые плавили молибденовую сталь в Горной академии. Но мы своим химикам тогда не поверили, находясь под гипнозом автора статьи, напечатанной в иностранном журнале и широко разрекламированной по всей стране.

Где-то в подсознании у меня, как лампочка, загорелись слова: «Доверять-то доверяй, но и проверяй!»

Вскоре после этого случая Тевосян, который в то время работал уже помощником мастера у электропечи, как-то сказал мне:

– А ты знаешь, я, кажется, поспешил с заключением в оценке крупповского метода производства стали. Чего-то мы главного еще не уловили в их методе.

Разница в процессе действительно была разительной, в особенности в методах раскисления.

– Вот смотри, мы загружаем ферросилиций в виде крупных кусков и стараемся, чтобы эти куски погрузились в жидкую сталь. А здесь все делается наоборот – ферросилиций размалывается в порошок и разбрасывается на поверхность жидкого шлака – сколько его бесполезно окисляется за счет кислорода воздуха! Почему они так поступают?

– Давай поговорим с мастером Квятковским – сегодня он в смене.

И мы пошли к Квятковскому.

– Почему вы не кусковой ферросилиций используете при раскислении стали, а измельчаете его? – спросили мы Квятковского.

– Раньше кусковым пользовались, а вот уже много лет как мелкий применяем.

– Но почему? – спросил я.

Мастер взглянул на меня и произнес:

– Я в высшей школе не учился. Я не инженер. Этот вопрос вам надо задавать не мне, а инженеру. Спросите Шенка – он доктор. Он вам объяснит почему.

Доктор Шенк большей частью работал в ночной смене. Мы знали, что он собирает материалы для новой книги или статьи, а выпущенная им ранее книга по теории металлургических процессов нам была хорошо известна.

Может быть, нам поработать в ночной смене с Шенком и порасспросить его? Эта мысль возникла у нас обоих – у Тевосяна и у меня. И мы решили со следующей недели перейти в ночную смену. Ночью работать спокойнее. В цехах нет начальства и посторонних посетителей. Никто не отвлекает, да и рабочие у печей более разговорчивы.

В первый же день при встрече с Шенком мы задали ему мучавший нас вопрос:

– Почему на заводе используется не кусковой, а порошкообразный ферросилиций?

– Пройдемте в конторку к мастеру, – предложил Шенк, – мне нужна черная доска, для того чтобы писать… Для чего мы вводим в жидкую сталь ферросилиций? – поставил вопрос Шенк и сам же ответил: – Для того чтобы отобрать кислород у железа и связать его в форме окиси кремния. Так? Ну, а теперь посмотрим, что же будет происходить, если мы будем загружать кусковой ферросилиции? Куски ферросилиция, погруженные в жидкую сталь, растворятся в ней, и кремний будет отбирать кислород от окислов железа. Не правда ли?

– А что будет с продуктом реакции – окисью кремния?

– Она в большей своей части останется в жидком металле в виде шлаковых включений. Часть окиси поднимется вверх и перейдет в шлак, но большая часть останется в стали, а при разливке стали и остывании слитков законсервируется в тшх и, таким образом, насытит сталь неметаллическими включениями.

А что произойдет, если мы тот же ферросилиций, но в форме порошка будем разбрасывать по поверхности жидкого шлака?

Ферросилиций в этом случае будет взаимодействовать с окислами железа, находящимися в шлаке. Освобожденное от кислорода железо будет переходить в металл, а окись кремния останется в шлаке. Уменьшение окислов железа в шлаке нарушит равновесие, и окислы железа начнут диффундировать из металла в шлак. Мы этот процесс раскисления так и назвали – диффузионным. Теория процесса подробно разобрана в моей книге.

18
{"b":"217747","o":1}