Литмир - Электронная Библиотека
Содержание  
A
A

Рис. 77б. Движение метрового стержня, наблюдаемое в системе отсчёта ракеты.

Метровый стержень, параллельный оси 𝑥, движется в положительном направлении оси 𝑦 в лабораторной системе отсчёта со скоростью β𝑦. В системе отсчёта ракеты этот стержень несколько наклонён вверх в положительном направлении оси 𝑥'. Объясните, почему это так, причём сначала не пользуясь уравнениями. Пусть центр метрового стержня проходит через точку 𝑥=𝑦=𝑥'=𝑦'=0 в момент 𝑡=𝑡'=0, как это изображено на рис. 77а и 776. Вычислите затем величину угла θ', образованного метровым стержнем и осью 𝑥' в системе отсчёта ракеты. Обсуждение. Где и когда пересекает правый конец метрового стержня ось 𝑥 с точки зрения лабораторной системы отсчёта? Где и когда пересекает правый конец метрового стержня эту ось с точки зрения системы отсчёта ракеты? Экспериментально наблюдаемая томасовская прецессия электрона в атоме (см. упражнение 103) может быть объяснена тем же самым путём, что и явление наклона метрового стержня. ▼

53*. Парадокс метрового стержня 1)

1) См. R. Shaw, American Journal of Physics, 30, 72 (1962).

Замечание. До того как приступать к упражнению 53, следует разобраться в упражнении 52.

Метровый стержень, параллельный оси 𝑥 лабораторной системы отсчёта, движется в ней по направлению к началу координат со скоростью β𝑟. Очень тонкая пластинка, параллельная плоскости 𝑥𝑦 в лабораторной системе отсчёта, движется в ней вверх в направлении оси 𝑦 со скоростью β𝑦. В пластинке имеется круглое отверстие диаметром 1 м, в центре которого проходит ось 𝑦. Центр метрового стержня оказывается в начале пространственных координат лабораторной системы отсчёта в тот момент, когда движущаяся вверх пластинка достигает плоскости 𝑦=0. Так как метровый стержень претерпел лоренцево сокращение в лабораторной системе отсчёта, то он без труда проходит сквозь отверстие в пластинке. Поэтому в ходе движения метрового стержня и пластинки между ними не произойдёт соударения. Однако кто-нибудь может выдвинуть возражение против этого вывода и аргументировать его следующим образом: в системе отсчёта ракеты, где метровый стержень покоится, он не подвергнут сокращению, но зато в этой системе лоренцево сокращение испытывает отверстие в пластине. Поэтому невозможно, чтобы сохраняющий свою полную длину метровый стержень прошёл через сжавшееся отверстие в пластинке. Таким образом, соударение между метровым стержнем и пластинкой неизбежно. Разрешите этот парадокс, используя ответ, полученный в предыдущем упражнении. Ответьте без всяких оговорок на вопрос: произойдёт соударение метрового стержня с пластинкой или нет?

Физика пространства - времени - _100.jpg

Рис. 78. Сможет ли метровый стержень пройти без соударения сквозь отверстие диаметром 1 м?

54**. Тонкий человек на решётке 1)

1) W. Rindler, American Journal of Physics, 29, 365 (1961).

Некто имеет обыкновение ходить крайне быстро — настолько быстро, что релятивистское сокращение длин делает его очень тонким. Когда он идёт по улице, ему нужно пройти по канализационной решётке. Человек, стоящий рядом с решёткой, не сомневается, что быстро идущий тонкий человек провалится в отверстие решётки. Однако с точки зрения быстрого ходока он сам обладает обычными размерами, а релятивистское сокращение претерпевает решётка. Для него отверстия в решётке много уже, чем для спокойно стоящего человека, и, конечно, он не думает о возможности провалиться. Кто же здесь прав? Ответ связан с относительностью свойства жёсткости.

Идеализируем эту задачу: пусть метровый стержень скользит вдоль самого себя по гладкому столу. Пусть на пути этого стержня имеется отверстие шириной 1 м. Если лоренцево сокращение уменьшает длины в 10 раз, то в системе отсчёта стола (лаборатория) стержень имеет в длину 10 см и явно провалится в метровое отверстие. Предположим, что в лабораторной системе отсчёта метровый стержень движется настолько быстро, что в ходе падения в отверстие сохраняет горизонтальную ориентацию (наклона в лабораторной системе нет). Запишите в лабораторной системе отсчёта уравнение движения нижнего края метрового стержня, приняв, что 𝑡=𝑡'=0 в тот момент, когда задний конец метрового стержня пересекает край отверстия, вступая в него. При малых значениях вертикальной составляющей скорости стержень будет падать с обычным ускорением 𝑔. В системе отсчёта метрового стержня (ракеты) этот стержень имеет длину 1 м, тогда как отверстие подверглось лоренцеву сокращению в 10 раз. Теперь ширина отверстия 10 см, и стержень никак не может упасть в него. Произведите преобразование, переведя уравнения движения из лабораторной системы в систему отсчёта ракеты, и покажите, что стержень «перегнётся» в этой последней системе через край отверстия, иначе говоря, он не будет жёстким (твёрдым). Упадёт ли в конце концов стержень в отверстие в обеих системах отсчёта? Будет ли стержень на самом деле твёрдым или деформируемым в ходе этого опыта? Можно ли найти какие-либо физические характеристики этого стержня (например, степень его гибкости или сжимаемости), исходя из того описания его движения, которое даёт нам теория относительности? ▼

54а. Измерение скорости стандартного объекта одиночным наблюдателем — подробный пример 1)

1 Упражнение добавлено переводчиком - Прим. ред.

Построение системы отсчёта при помощи решётки с часами — почти всегда умозрительная операция. Более того, мы вынуждены описывать множество объектов и происходящие с ними процессы, не приходя с этими объектами в прямой контакт. Так, например, астрономические наблюдения дают информацию о чрезвычайно далёких звёздах и галактиках, которые не только нам никогда не удастся посетить (см. упражнение 104), но даже луч радиолокатора, посланный из Солнечной системы, не смог бы вернуться к нам за исторически разумные сроки, отразившись от этих удалённых объектов (мы уже не говорим об интенсивности отражённого луча). Всё человечество в астрономических масштабах — это одна мировая линия (двойная планетная система Земля — Луна не более чем типографская точка, если изобразить на листе бумаги Солнечную систему). Поэтому рассмотрим такого одиночного наблюдателя, получающего всю возможную информацию из внешнего мира через приходящий к нему, независимо от его воли, свет — через световой конус прошлого . Понятие одновременности для такого наблюдателя представляет лишь академический интерес, гораздо важнее для него понятие «одновременно наблюдаемого». Один из кинематических эффектов, проявляющихся при наблюдениях с помощью светового конуса прошлого, рассмотрен в упражнении 50. Здесь мы рассмотрим вопрос о том, чему равна «одновременно наблюдаемая» скорость объекта, летящего вдоль луча зрения наблюдателя.

Пусть стандартный предмет (например, пятикопеечная монета) равномерно и прямолинейно движется вдоль луча зрения наблюдателя. Сначала предмет летит на наблюдателя; в момент встречи наблюдатель может быстро пригнуться 2), чтобы пропустить предмет; затем предмет удаляется от наблюдателя. Так как размеры предмета стандартные, наблюдатель может по углу зрения, под которым виден предмет, определить расстояние до него. По изменению этого «одновременно наблюдаемого» расстояния со временем можно определить «одновременно наблюдаемую» скорость движения объекта.

2) Для человечества «пригнуться» было бы затруднительно.

а) Требуется показать, что эта скорость равна

β

до

=

β

1-β

до встречи объекта с наблюдателем и

49
{"b":"651120","o":1}