Литмир - Электронная Библиотека
Содержание  
A
A

Всего через четыре дня после откладывания яйца зародышевый диск уже «свернулся» в трубку, формируя тело будущего цыпленка. В нем отчетливо виден развивающийся глаз, и сердце эмбриона уже бьется. (Для сравнения, человеческий эмбрион достигает сходной стадии развития лишь через полные четыре недели с момента зачатия.) К этому времени вокруг эмбриона цыпленка также сформировалась сеть кровеносных сосудов, оплетающая наружную поверхность желтка. Если посмотреть на четырехдневное оплодотворенное яйцо, которое высиживает курица, на свет, эти сосуды прекрасно видны, они расходятся как тонкая красная паутинка из центрального красного сгустка – это и есть зародыш. Если проделать в скорлупе крошечное отверстие и вставить тонкую иглу в один из кровеносных сосудов эмбриона, то можно взять минимальный образец крови. В нем содержатся первые кровяные клетки, а также некоторые стволовые клетки, имеющие ключевое значение. Это и есть те самые первичные половые клетки, которые в конце концов окажутся в половой железе развивающегося цыпленка и будут готовы производить яйцеклетки или сперматозоиды, в зависимости от пола особи.

Майк Макгру берет анализы крови у эмбрионов на еще более ранней стадии развития, когда тем всего два с половиной дня от роду. На этом этапе развития в крошечном образце крови содержится сто первичных половых клеток. Далее он проделывает следующую операцию: в течение нескольких месяцев выращивает культуру этих клеток вне эмбриона. Это дает исследователю возможность редактировать гены, используя новый метод для точной модификации, вырезая участки ДНК и вставляя на их место новые.

После внесения всех необходимых изменений первичные половые клетки снова вводятся в куриный эмбрион, который также подвергся генетическим манипуляциям и не производит собственные половые клетки. Как ни странно, далее процесс развития протекает нормально: генетически модифицированные первичные половые клетки перемещаются в яичники или семенники развивающегося цыпленка. Когда он вылупляется и вырастает в курочку или петушка, то его организм производит яйцеклетки или сперматозоиды с измененной ДНК.

Инструмент, позволяющий генетикам вносить точные изменения в геном, носит название CRISPR – это новейший механизм в неонеолитическом наборе инструментов, доступном специалистам в области генной инженерии. Значительно усовершенствованная методика по сравнению с традиционной технологией вирусных векторов, хотя и этот новый инструмент тоже позаимствован у природы и был открыт в результате многолетних обширных исследований способов ведения непрекращающейся войны между вирусами и бактериями.

Некоторые бактерии научились весьма хитроумно отражать вирусные атаки, сформировав систему, обеспечивающую их иммунитет к вирусам. Когда такие бактерии подвергаются нападению вирусов, они копируют участок генетического кода вируса в свой собственный геном. Подобное поведение кажется неразумным – так содействовать вирусу, – но это вовсе не так. Таким образом бактерии «запоминают» патоген и успешно отражают его нападение в будущем. Участок ДНК вируса в геноме бактерии окружается странными повторяющимися участками собственной ДНК бактерии, служащими своего рода закладками для бактерии. Эти закладки известны как CRISPR, от английской аббревиатуры, которая обозначает «группы коротких палиндромных повторов, разделенных регулярными промежутками» (Clustered Regularly interspaced Short Palindromic Repeats). При заражении бактерии вирусом ее клетка ищет нужную закладку и прочитывает короткий участок вирусной ДНК, а именно копирует ее последовательность в несколько иной молекуле, РНК (название расшифровывается как рибонуклеиновая кислота, а ДНК – как дезоксирибонуклеиновая кислота). Эта копия, направляющая РНК (гид-РНК), связывается с ферментом бактериальной клетки, разрезающим ДНК, как молекулярные ножницы. Гид-РНК «наводится на цель», связывается с ДНК атакующего патогена, и тогда фермент разрезает ее, нейтрализуя вирус. Таким образом, если вам необходимо сделать разрез в ДНК в строго определенном месте, будет достаточно обозначить цель, создав соответствующую направляющую РНК, а затем связать ее с ферментом-«ножницами», чтобы сделать разрез в ДНК в нужном месте. При этом разрезов можно сделать столько, сколько вы захотите, и на любом участке ДНК.

Возможностей применения этого инновационного инструмента – бесчисленное множество. С помощью новой технологии редактирования генов можно вырезать отдельные гены с гораздо большей точностью, чем раньше, для создания модифицированного эмбриона. По мере развития эмбриона станет понятна функция удаленного гена, поскольку ученые своими глазами увидят, что происходит в его отсутствие. Лучшее представление о развитии эмбриона позволит нам в будущем лучше справляться с болезнями, причем не только у птиц, но и у позвоночных в целом, включая людей. Помимо этого, технология CRISPR имеет потенциальное терапевтическое применение – для удаления поврежденных участков ДНК из живых организмов. Она уже была протестирована в лаборатории для удаления вызывающих рак участков вирусных ДНК из человеческих клеток. На самом деле эта технология настолько точна, что позволяет извлечь одну пару оснований – практически только одну нуклеотидную «буковку» хромосомы – из генома. Но метод CRISPR полезен не только для полного удаления участков ДНК, они также могут быть вырезаны и вставлены в другое место. Клеткам никогда не нравится вмешательство в их ДНК. В результате активируются молекулярные процессы, направленные на устранение повреждений. Обычно для восстановления поврежденного участка ДНК клетка «смотрит» на другую хромосому из пары. Однако клетке можно предложить для копирования сконструированный фрагмент ДНК. Такой вариант использования CRISPR тоже был опробован в лабораториях: дрожжи перепрограммировали на производство биотоплива; были модифицированы некоторые сорта культурных растений; созданы разновидности комаров, устойчивые к малярии. Американская ассоциация содействия развитию науки назвала этот новый инструмент редактирования генов научным прорывом 2015 года. Данная область науки быстро развивается, возможности применения технологии необычайно велики, но возникает слишком много этических вопросов. Более сорока лет Хелен Сэнг изучает развитие позвоночных и применяет методы модификации генома. Она по-прежнему занимается вопросами эмбрионального развития, но часть ее научной деятельности была посвящена изучению модификации кур с помощью генной инженерии для производства полезных белков, которые у них обычно отсутствуют. Хелен проводила эксперименты с куриными яйцами и человеческим интерфероном – белком, который синтезируется в организме человека, но также используется в качестве лекарства для борьбы с вирусными инфекциями. В белке куриного яйца содержится белок овальбумин. Если выделить регуляторную последовательность-«переключатель» для овальбумина и соединить ее с геном интерферона человека, а потом поместить полученную структуру в организм курицы, то он будет вырабатывать как овальбумин, так и интерферон. Таким образом, можно использовать генетическую модификацию кур, чтобы упростить изучение процесса развития, – как поступал Адам с зеленым флуоресцентным белком в лимфоидных клетках, а также можно заставить организм курицы производить полезные для человека белки, которые будут содержаться в яйцах, например интерферон.

Тем не менее в последнее время предметом исследований Хелен в Рослинском институте стали способы изменения птицы, которую мы употребляем в пищу. Ей хотелось заниматься чем-то, имеющим непосредственную пользу в повседневной жизни, например развитием у кур устойчивости к заболеваниям. Хелен вдохновила возможность применения технологии CRISPR для быстрого достижения конкретных результатов. Она рассказала мне о том, как мог бы работать этот инструмент. Для начала необходимо проверить сопротивляемость птиц различным заболеваниям – например, птичьему гриппу – и определить гены, кодирующие данную особенность. Нуклеотидная последовательность этого гена может отличаться от последовательности такого же гена у другой особи лишь несколькими нуклеотидами, но даже такие минимальные различия играют огромную роль. Идентифицировав нужный ген, можно с помощью технологии CRISPR вырезать соответствующий участок генома у другой птицы и заменить его на ген, отвечающий за проявление полезного признака. Таким образом, происходит распространение определенного генетического варианта, уже существующего у кур, на все поголовье, без необходимости прибегать к трудоемкому процессу селекции. Но есть, конечно, и другая возможность: помимо введения варианта гена, выделенного у другой особи того же вида, этот метод может применяться для заимствования генов у другого вида. «Мы можем перемещать генетическую информацию туда, куда пожелаем», – объяснила Хелен, которую также восхищает потенциал нового генетического инструмента. «Мне кажется, именно эта возможность вызывает наибольшие опасения, именно идея перемещения генетической информации за границы вида», – поделилась я. «Но ведь в любом случае речь идет о ДНК, – ответила Хелен, – и нам известно, что она перемещается; так, у человека есть кое-что от других видов». Это действительно так, в частности, в нашей ДНК присутствуют фрагменты генома вирусов, которые так любят оставлять свои генетические следы в чужих геномах.

52
{"b":"642568","o":1}