Литмир - Электронная Библиотека
Содержание  
A
A

𝐹

(действие)

=-

𝐹

(противодействие),

(7.1.2)

он делает физическое утверждение, так как он приводит детальные характеристики связи между силами и физическими объектами. Ньютоновский закон гравитации есть другая детальная характеристика того, как окружение объекта связывается с его ускорениями. Второй закон Ньютона задаётся в духе ”cherehez la femme”: Если мы видим силу, то мы должны искать ”виновный” объект, который вызывает эту силу.

Аналогичным способом наша простая формулировка принципа эквивалентности даёт физическое утверждение о том, как окружение влияет на тела; оно не зависит от правильности второго закона Ньютона (7.1.1). Окружение в этом случае состоит из масс, которые образуют гравитационные поля, или внешние силы создают ускорения.

Невозможно полностью исключить гравитационные эффекты однородными ускорениями. Представим себе ящик на орбите земли, т.е. спутник. Так как гравитационное поле не является однородным, имеется только одна точка вблизи центра масс спутника, где гравитационные эффекты в точности скомпенсированы ускорением. Если мы удаляемся достаточно далеко от центра масс, гравитационное поле Земли меняет или свою величину, или направление, так что будут существовать малые нескомпенсированные компоненты гравитационных сил. Если ящик не очень велик, эти дополнительные силы очень близки к пропорциональности расстоянию от центра этого ящика и имеют квадрупольный характер, как показано на рис.7.2(а). Силы, подобные этим, вызывают приливы на Земле, так что мы можем называть их приливными силами. Мы можем рассмотреть также ящик, который помещён в подобное неоднородное поле, но не ускоряется, как показано на рис.7.2(б). Принцип эквивалентности говорит нам теперь, что мы можем создать ситуацию, физически неотличимую от той, которая происходит внутри спутника, если мы поместим большие массы достаточно далеко, так что мы накладываем однородное поле, которое в точности компенсирует гравитацию в центре ящика.

Фейнмановские лекции по гравитации - _28.jpg

Рис. 7.2.

Попробуем посмотреть, как мы могли бы сделать ещё лучшее утверждение эквивалентности: одно гравитационное поле внутри ускоряемого ящика эквивалентно другому гравитационному полю и другому ускорению ящика. Мы можем исключить гравитацию в любой отдельной точке и в любой отдельный момент времени; в некоторой малой области, окружающей данную точку, остаточные отличия должны быть пропорциональны расстоянию от точки, где ускорения скомпенсированы. Становится очевидным, что при создании нашей теории мы будем рассматривать преобразования, которые можем символически записать как

(гравитация)'

=

(гравитация)

+

(ускорение).

(7.1.3)

Вследствие этой возможности, мы не будем способны сказать в любом абсолютном смысле, что один эффект является гравитационным или вызывается силами инерции; невозможно определить ”истинную” гравитацию, так как мы не можем даже точно определить, какая часть наблюдаемой силы вызывается гравитацией и какая обусловлена действием сил инерции. Оказывается верным то, что мы не можем имитировать гравитацию ускорениями всюду, что проявляется в том случае, когда мы рассматриваем ящики больших размеров. Тем не менее, рассматривая преобразования (7.1.3) в инфинитезимальных областях, мы надеемся узнать, как описать эту ситуацию в дифференциальном виде; только затем мы будем беспокоиться о граничных условиях или описании гравитации в больших областях пространства.

В специальной теории относительности проводится интенсивное использование инерциальных систем отсчёта, которые движутся друг относительно друга с постоянной скоростью и прямолинейно. Но, как только мы допускаем существование гравитирующих масс всюду во Вселенной, концепция такого истинного неускоренного движения становится невозможной, поскольку всюду будут гравитационные поля.

Если мы проводим эксперименты внутри ящика, который не находится в свободном падении, то будет возможно определить наличие сил типа гравитации, например, экспериментами с применением пружин. Тем не менее, мы не можем сказать, находясь внутри ящика, ускоряемся ли мы относительно ”туманности”, или эти силы обусловлены массами, находящимися в окрестности ящика. Именно этот характерный факт о гравитационных силах даёт намёк на постулат, который в конце концов приводит нас к полной теории.

Мы постулируем: будет невозможно посредством какого бы то ни было эксперимента, проводимого внутри такого ящика, детектировать различие между ускорением относительно ”туманности” и гравитацией. Таким образом, ускоряющийся ящик в некотором гравитационном поле неотличим от покоящегося ящика в некотором другом гравитационном поле, если наблюдатель находится внутри ящика.

Это звучит так похоже на рассуждения Эйнштейна, так напоминает его постулат специальной теории относительности! Мы знаем, что принцип эквивалентности работает для пружин (как мы знали, что специальная теория относительности работает для электродинамики) и мы распространяем его по соглашению на какие бы то ни было эксперименты. Мы привыкли использовать такие процедуры к настоящему времени, но каким удивительным являлся этот принцип в 1911 году - таким удивительным человеком был Эйнштейн.

7.2. Некоторые следствия принципа эквивалентности

Принцип эквивалентности говорит нам о том, что свет отклоняется (от прямолинейного движения) в гравитационном поле. Величина этого отклонения, когда свет проходит заданное расстояние в области однородного гравитационного поля, может быть очень легко вычислена путём анализа движения света в ускоряемом ящике; если ящик ускоряется, то свет движется по прямой линии в неускоряемой системе отсчёта, т. е. рассматривается простая кинематика для вычисления траектории света внутри ящика. Для такого эксперимента необходимы только источник света и детектор, и ряд разрезов для того, чтобы определить траекторию движения света, как проиллюстрировано на рис. 7.3.

Фейнмановские лекции по гравитации - _29.jpg

Рис. 7.3.

Мы не можем использовать такие простые средства для вычисления отклонения света звездой, поскольку поле звезды неоднородно; подобное простое вычисление было бы неверным на множитель, равный 2, если мы просто используем ньютоновские потенциалы; для правильного вычисление необходимо использовать соответствующие релятивистские поля.

Принцип эквивалентности также говорит нам о том, что ход часов изменяется гравитацией. Свет, который испускается из вершины ускоряемого ящика, будет выглядеть смещённым в фиолетовую часть, если мы смотрим на него со дна ящика. Давайте проделаем некоторые вычисления, соответствующие малым скоростям. Время, за которое свет проходит от верха ящика до дна, составляет в первом приближении ℎ/𝑐 где ℎ - высота ящика на рис. 7.3. В то же самое время дно ящика приобрело небольшую дополнительную скорость 𝑣=𝑔ℎ/𝑐. Чистый эффект состоит в том, что приёмник движется относительно излучателя, так что частота смещается

𝑓

поглощ

=

𝑓

испущ

(1+𝑣/𝑐)

=

𝑓

испущ

(1+𝑔ℎ/𝑐)

.

(7.2.1)

Таким образом, приёмник на дне получит фотон с частотой, отличной от частоты, с которой испускался фотон. Заметим, что это заключение не зависит от энергии 𝐸=𝑚𝑐² и существования энергетических уровней, что необходимо было постулировать в соответствии с аргументами, которые были приведены ранее. Это заключение основано на ожидаемом поведении классических объектов; вычисление следует из геометрии и кинематики и даёт прямое физическое предсказание, следующее из постулата эквивалентности. Как и ранее, этот вывод не является парадоксом; часы выглядят более голубыми на вершине ящика, человек, живущий на вершине ящика, выглядит более голубым, чем человек, живущий на дне ящика. Аналогично предыдущему, мы можем вычислить сдвиг частоты для света, испускаемого человеком, живущим внизу. Так как в этом случае приёмник удаляется от источника, человек, живущий внизу, выглядит краснее, когда его рассматривают сверху.

50
{"b":"614071","o":1}