Рис. 8
Наша дискуссия сконцентрировалась на возможностях применения прибора, составной частью которого является установка, предложенная Эйнштейном. Такой прибор изображен на рис. 8 в том же псевдореалистическом стиле, как и некоторые из рисунков, приведённых раньше. Ящик, изображенный в разрезе, чтобы видно было его внутреннее устройство, подвешен на пружинных весах; положение ящика можно при помощи стрелки отсчитывать на шкале, укрепленной на подставке весов. Тогда взвешивание ящика можно произвести с любой заданной точностью Δ𝑚, устанавливая весы в нулевом положении при помощи соответствующих гирь. Но дело в том, что всякое определение этого положения с заданной точностью Δ𝑞 влечёт за собой неопределённость Δ𝑝 в значении количества движения ящика, причём Δ𝑝 связано с Δ𝑞 уравнением (3).
Эта неопределённость, очевидно, должна опять-таки быть меньше, чем полное количество движения, которое может быть передано полем тяготения телу с массой Δ𝑚, в течение всего времени 𝑇, занятого процессом взвешивания; отсюда следует
Δ
𝑝
≈
ℎ
Δ𝑞
<
𝑇𝑔
Δ
𝑚
,
(6)
где 𝑔 — ускорение силы тяжести. Чем точнее выполнен отсчёт 𝑞 по указателю, тем продолжительнее должно быть время взвешивания 𝑇, если нужно получить заданную точность Δ𝑚 при взвешивании ящика с содержимым.
С другой стороны, по общей теории относительности часы, передвинутые в направлении силы тяготения на величину Δ𝑞, изменят свой ход таким образом, что их показание на протяжении промежутка времени 𝑇 отклонится на величину Δ𝑇, заданную уравнением
Δ𝑇
𝑇
=
1
𝑐²
𝑔
Δ
𝑞
.
(7)
Поэтому, сравнивая (6) и (7), мы видим, что после взвешивания наши знания показаний часов содержат неопределённость
Δ
𝑇
=
ℎ
𝑐²Δ𝑞
Вместе с (5) эта формула приводит к соотношению
Δ
𝑇
Δ
𝐸
>
ℎ
в согласии с принципом неопределённости. Вследствие этого употребление прибора как средства для точного измерения энергии фотона помешает нам установить точный момент его вылета.
Эта дискуссия, так ярко показавшая силу и последовательность релятивистских аргументов, подчеркнула ещё раз необходимость различать, при изучении атомных объектов, между собственно измерительными приборами, служащими для определения системы отсчёта, и теми частями прибора, которые нужно рассматривать как объекты исследования и при описании коих нельзя пренебрегать квантовыми эффектами. Несмотря на столь убедительное подтверждение логичности и широты квантовомеханического способа описания, Эйнштейн тем не менее выразил мне в последующем разговоре свое чувство неудовлетворённости тем, что, как ему кажется, нам недостает таких твердо установленных принципов для описания природы, с которыми все могли бы согласиться. Исходя из своей точки зрения, я мог только ответить, что, задавшись целью навести порядок в совершенно новой области знаний, мы едва ли можем полагаться на какие-либо старые принципы, хотя бы и очень общие. Единственным обязательным требованием является отсутствие логических противоречий, но как раз в этом отношении математический аппарат квантовой механики удовлетворяет самым жестким условиям.
Сольвеевский конгресс 1930 г. был последним случаем, когда в наших дискуссиях с Эйнштейном мы могли воспользоваться присутствием Эренфеста, подзадоривавшего нас к спору и вместе с тем выступавшего в качестве посредника. Но незадолго до своей трагической смерти в 1933 г. он говорил мне, что Эйнштейн далеко не удовлетворён и что со свойственной ему проницательностью подметил новые аспекты ситуации, укрепляющие его критическую позицию. Действительно, Эйнштейн, исследуя возможности применения взвешивающей установки, придумал другую процедуру, которая обостряла парадоксы настолько, что их логическое разрешение на первый взгляд не представлялось возможным (процедуру эту Эйнштейн придумал, впрочем, имея в виду другие применения, оказавшиеся невыполнимыми). Так, Эйнштейн указал на то, что после предварительного взвешивания ящика с часами и последующего вылета фотона всегда ещё останется выбор: или повторить процесс взвешивания, или же открыть ящик и сравнить показания часов с лабораторной шкалой времени. Таким образом, на этой стадии опыта мы ещё можем выбрать, хотим ли мы сделать заключение об энергии фотона или же о моменте времени, когда фотон покинул ящик. Не оказывая какого-либо влияния на фотон между его вылетом из ящика и его последующим взаимодействием с надлежащими измерительными приборами, мы можем сделать точные предсказания или о моменте его прибытия, или же о количестве энергии, освобожденной благодаря его поглощению. Но так как согласно квантовой механике задание состояния изолированной частицы не может содержать одновременно вполне определённое соответствие со шкалой времени и точное фиксирование энергии, то может показаться, что аппарат квантовой механики не даёт средств для надлежащего описания действительности.
И на этот раз проницательный ум Эйнштейна выявил особый аспект того положения вещей, с каким мы встречаемся в квантовой теории, — аспект, ярко показывающий, насколько далеко мы отошли от привычных объяснений явлений природы. Тем не менее я не мог согласиться с тенденцией его замечаний, как они мне были переданы Эренфестом. По моему мнению, если мы имеем логически непротиворечивый математический аппарат физической теории, то единственный способ доказать его несостоятельность заключается в том, чтобы показать, что его следствия расходятся с опытом или что его предсказания не исчерпывают того, что может наблюдаться на опыте. Аргументация же Эйнштейна не приводит ни к тому, ни к другому. В самом деле, мы должны уяснить себе, что в рассматриваемой задаче мы имеем дело не с одной определённой экспериментальной установкой, но фактически с двумя взаимно исключающими друг друга установками. В одной из них весы вместе с другими приборами, например спектрометром, служат для изучения переноса энергии фотоном; во второй установке затвор, регулированный по лабораторным часам, а также другие аналогичные приспособления, синхронизированные с этими часами, служат для того, чтобы измерять время, нужное фотону, чтобы пройти данный отрезок пути. В обоих случаях следует ожидать (как это принимал и Эйнштейн), что наблюдаемые эффекты будут вполне соответствовать предсказаниям теории.
Эта задача вновь подчёркивает необходимость рассматривать всю экспериментальную установку, точная спецификация которой существенна для возможности однозначного применения аппарата квантовой механики. Попутно можно к этому добавить, что парадоксы такого же рода, как рассмотренные Эйнштейном, возникают и в таких простых установках, как показанная на рис. 5. Ведь после предварительного измерения количества движения экрана нам ещё предоставлен в принципе выбор, хотим ли мы после прохода электрона или фотона сквозь щель повторить измерение количества движения или же мы хотим определить положение экрана. В зависимости от того, что мы выберем, мы сможем делать предсказания относительно тех или иных последующих наблюдений. Заметим здесь ещё, что для эффектов, которые можно наблюдать при помощи некоторой определённой экспериментальной установки, очевидно, будет безразлично, установлены ли планы построения приборов или манипулирования с ними заранее или же мы предпочитаем отложить окончательное составление этих планов до более позднего момента, когда частица уже будет на пути от одного прибора к другому.
В квантовомеханическом описании наша свобода конструировать экспериментальную установку и манипулировать с него находит свое надлежащее выражение в возможности выбирать классические параметры, вводимые в рассмотрение при всяком последовательном применении формального аппарата. Действительно, в этом отношении квантовая механика обнаруживает соответствие с положением вещей в классической физике, причём это соответствие настолько полно, насколько этого можно ожидать, если иметь в виду неделимость квантовых явлений. Выдвинутые Эйнштейном возражения и сомнения сыграли особенно полезную роль в выяснении именно этого обстоятельства, и тем самым они и на этот раз послужили желанным толчком к исследованию самого существа дела.