Литмир - Электронная Библиотека
Содержание  
A
A

Устранение эфира из теоретической картины освобождало автора от допущенной в работах Лармора и Лоренца непоследовательности: эфир они привлекали только для того, чтобы с его же помощью объяснить невозможность его наблюдения. Эйнштейн использовал также условное разделение систем отсчета на покоящуюся и движущуюся, которое, вообще говоря, не отвечало самому духу теории относительности, признающей лишь взаимное движение систем отсчета. Но Эйнштейн не связывал систему, названную им покоящейся, с эфиром. Поэтому в его подходе не могло даже возникнуть искушение объяснять движением через эфир полученные для движущейся системы необычные результаты — сокращение длин твердых тел и увеличение длительности временных интервалов. Эти эффекты представлялись результатом сопоставления соответствующих эталонов длительности и протяженности двух различных систем отсчета, находящихся в относительном движении.

Самое же существенное отличие работы Эйнштейна от предыдущих состояло в понимании того факта, что те же самые релятивистские эффекты возникают и для «покоящейся» системы, если, в свою очередь, ее сопоставлять с движущейся системой. Об этом в статье была сказана всего одна фраза: "Ясно, что те же результаты получаются для тел, которые находятся в покое в «покоящейся» системе и которые рассматриваются из равномерно движущейся системы". Но именно эта фраза характеризовала другой уровень понимания открытых ранее эффектов теории относительности.

Обратимость релятивистских эффектов, их симметрия по отношению к двум рассматриваемым инерциальным системам отсчета, непосредственно следовала из преобразований Лоренца. Чтобы установить этот факт, достаточно было выразить координаты «покоящейся» системы через координаты «движущейся» системы. Такое обратное преобразование сразу делало излишним объяснение релятивистских эффектов движением тел относительно эфира. Действительно, после обратного преобразования требовалось бы уже объяснить сокращение длины тела в системе, покоящейся относительно эфира. Но этот шаг не был сделан ни Лоренцем, ни Лармором, и поэтому в их работах оставалась иллюзия эфирной природы релятивистских эффектов.

Вопрос, связанный с обратными преобразованиями, в основной работе Пуанкаре получил лишь формальное освещение. Отмеченные им групповые свойства преобразований Лоренца включали и условие обратимости всех результатов. Кроме того, при выводе самих преобразований Лоренца он непосредственно использовал сопоставление с обратным преобразованием. Однако Пуанкаре ни одним словом не пояснил, что из этого свойства группы Лоренца вытекает обратимость всех необычных свойств новых пространственно-временных соотношений. В своем теоретическом трактате он обошел этот вопрос молчанием, хотя его более ранние работы содержали все необходимые данные, чтобы прийти к такому выводу.

Вклад немецких ученых

На статью Эйнштейна сразу же обратил внимание редактор журнала "Анналы физики", выдающийся теоретик, профессор Берлинского университета Макс Планк. Работа Эйнштейна вызвала у него самый непосредственный интерес возможностью провести "такое грандиозное упрощение всех проблем электродинамики движущихся тел, что вопрос о допустимости принципа относительности должен ставиться в первую очередь в любой теоретической работе, посвященной этой области". Вместе с тем, не найдя в работе Эйнштейна того обобщения уравнений механики, которое требовалось новым принципом относительности, он сам приступил к решению этой задачи. Свои результаты Планк доложил 23 марта 1906 года на заседании Немецкого физического общества. Отметив, что "принцип относительности, предложенный недавно Лоренцем и в более общей формулировке Эйнштейном", требует пересмотра законов механики, он привел вывод новых уравнений движения. Эта работа завершала создание релятивистской механики.

Особенно благоприятная ситуация для признания новых идей теории относительности сложилась в Геттингене. Прославленный ранее трудами великого Гаусса, этот университетский город благодаря усилиям главенствовавшего там Феликса Клейна превратился в крупнейший математический центр. С 1894 года в Геттингенском университете работает выдающийся математик Давид Гильберт, а с 1902 года — его ближайший друг Герман Минковсквй, известный своими исследованиями по теории чисел и по геометрии.

В 1905 году в Геттингене под руководством Гильберта и Минковского действовал постоянный семинар по проблемам электродинамики движущихся тел. Инициатива посвятить семинар этой теме исходила от Минковского. Его тяга к физическим проблемам была не случайна. Работая в Бонне, под влиянием Г. Герца он начал, по его словам, свое "плавание в физических водах". Изучая новейшие проблемы физической науки, Минковский выделил электродинамику как наиболее интересную для математиков. В связи с работой Лоренца он уже намечал провести исследование новых пространственно-временных преобразований, когда его внимание обратили на статью неизвестного автора, появившуюся в "Анналах физики". К удивлению многих, Минковский проявил осведомленность о личности автора. Вспомнив своего студента в Цюрихском политехникуме, он поразил собравшихся на семинаре своей репликой: "Ах, этот Эйнштейн, всегда пропускавший лекции; я бы никогда не поверил, что он способен на такое!" То новое воззрение на пространство и время, которое было сформулировано в работе Эйнштейна, требовало, по мнению Минковского, существенной доработки в смысле математического оформления. Своим студентам он говорил: "Эйнштейн излагает свою глубокую теорию с математической точки зрения неуклюже — я имею право так говорить, поскольку свое математическое образование он получал в Цюрихе у меня". Разработка математической стороны новой теории и углубление понимания единого пространственно-временного описания физических явлений стали главной темой его исследований начиная с 1906 года.

В 1907 году Минковский выступил в Геттингене с докладом "Принцип относительности". В следующем году он опубликовал на эту тему обширный трактат, в котором наиболее полно развил уравнения электродинамики движущихся тел. Вводная часть этого труда была озаглавлена "Теория Лоренца; теорема, постулат, принцип относительности". Теоремой относительности автор назвал неизменность уравнений Максвелла при преобразовании пространства и времени по Лоренцу. Постулатом относительности он назвал применение той же теоремы для неизвестных еще законов физики. Далее Минковский отметил, что "Г. А. Лоренц нашел теорему относительности и создал постулат относительности как гипотезу…" и что "наиболее четко Эйнштейн выразил мысль о том, что этот постулат не искусственная гипотеза, а скорее возникшее из явлений определенно новое понимание времени". Принцип же относительности, по его мнению, ранее не был сформулирован, и его смысл связан с неизменностью законов физических явлений в четырехмерном мире пространство — время.

В получившем широкую известность докладе "Пространство и время", прочитанном осенью 1908 года в Кёльне, Минковский предложил даже другое название для принципа относительности. "Мне хотелось бы, — заявил он, — этому утверждению скорее дать название "постулат абсолютного мира" (или, коротко, мировой постулат)". В том же докладе он снова отметил, что установление равноправности времен инерциальных систем "явилось заслугой лишь Эйнштейна", ни словом не упомянув, что еще в 1900 году Пуанкаре объяснил это в статье "Теория Лоренца и принцип равенства действия и противодействия".

Претензия Минковского на более общую формулировку принципа относительности имела определенное основание, если учитывать только работы Лоренца и Эйнштейна. В 1905 году Эйнштейн привлекал новые представления о пространстве и времени лишь для объяснения принципа относительности в электродинамике, и в этом сказывалось его отставание от развитого Пуанкаре глубокого понимания физической сущности происшедшего в науке переворота. Эйнштейн тогда не ставил прямо вопрос о том, что все разделы физики подлежат перестройке и согласованию с преобразованиями Лоренца. Отстаивая новые представления о времени и пространстве, он не связывал их с новой формой всеобщего принципа относительности. В такой плоскости вопрос был поставлен только Пуанкаре и Минковским, причем первый распространил требование принципа относительности даже на теорию тяготения.

78
{"b":"138298","o":1}