Литмир - Электронная Библиотека
Содержание  
A
A

Время, за которое маятник, совершив полное колебание, возвращается в исходное положение, называют периодом. Если точно через период бросать взгляд на маятник, то невозможно угадать, движется он или нет: маятник каждый раз оказывается в одном и том же положении. Периодическая функция тоже нечувствительна к изменению своей переменной величины на период. Сколько периодов ни приплюсовывай к какому-нибудь моменту времени, значение функции остается тем же самым, так как в конце каждого периода она возвращается к тому, с чего этот период начинала. Чтобы построить полный график такой функции, достаточно иметь лишь небольшой его участок — укладывающиеся на одном периоде гребень и провал. Ведь вся волнообразная линия, вычерчиваемая маятником, представляет собой не что иное, как последовательное повторение одной и той же «волны» Длительностью в период. Сдвигая по оси времени отрезок, равный периоду, и каждый раз воспроизводя над ним стандартную «волну», можно как угодно далеко протянуть кривую синуса или косинуса.

Этому простому понятию периодичности в первой половине XIX века был придан более общий смысл. В 1827 году гениальный норвежский математик Нильс Генрик Абель приступил к разработке теории эллиптических функций. Его исследования подхватил молодой кенигсбергский профессор Карл Густав Якоби. Трудами этих двух ученых в математику были введены совершенно новые трансцендентные функции, двоякопериодические.

Эллиптическая, функция изображается уже не линией над осью времени, а целой поверхностью над плоскостью. Поэтому период ее «плоский», двухмерный, а не линейный, как у синуса или косинуса. Вся «неповторимость» эллиптической функции умещается в пределах некоторого ограниченного участка плоскости — параллелограмма, называемого параллелограммом периода. Над всей остальной плоскостью функция только повторяет один и тот же фрагмент своей поверхности, который обрисован над этим параллелограммом. Чтобы построить полный график функции, то есть полную ее поверхность, достаточно переставлять на плоскости параллелограмм периода вместе с тем куском поверхности, который над ним расположен, как если бы ровную площадь застраивали совершенно одинаковыми, вплотную примыкающими друг к другу домами. Море повторяющихся крыш, рельефная мозаика, выложенная из одного-единственного фрагмента, — вот что такое эллиптическая функция, периодичная на плоскости.

Введение эллиптических функций оказалось настолько полезным, позволило решить столько задач, казавшихся до этого неразрешимыми, что математики уже не раз задумывались над тем, как бы еще больше углубить и расширить понятие периодичности. Быть может, на этом пути их ожидают еще более грандиозные удачи и достижения? Эти надежды были осуществлены в первых работах Пуанкаре.

Извержение

В одной из своих монографий Брио и Буке отмечали: «Случаи, когда можно интегрировать дифференциальное уравнение, в высшей степени редкие и должны рассматриваться как исключения. Но можно рассмотреть дифференциальное уравнение как определяющее функцию и заняться изучением свойств этой функции по данному дифференциальному уравнению». Из самого дифференциального уравнения авторы предлагали извлекать информацию о той неизвестной функции, которая является его решением. Этот новый подход превращал все не решенные до сих пор дифференциальные уравнения в неисчерпаемый источник новых трансцендентных функций. К сожалению, не было примеров подобных открытий на этом заманчивом, многообещающем пути. Сами Брио и Буке продемонстрировали свой метод на известных эллиптических функциях, установив их основные свойства, которые уже были объектом исследования многих математиков.

Анри Пуанкаре, со студенческих лет находившийся под большим влиянием идей Брио и Буке, решил воспользоваться их рекомендацией, разработанным ими методом. Приняв в качестве определения искомой функции линейное дифференциальное уравнение с алгебраическими коэффициентами, он пришел к первому важному результату: функция, являющаяся решением такого уравнения, должна оставаться неизменной при дробно-линейных преобразованиях переменной величины, от которой она зависит. Это свойство функции сразу же позволяло отнести ее к разряду особого рода периодических функций, если пересмотреть и расширить понятие периодичности. Обычные периодические функции и двоякопериодические эллиптические функции остаются неизменными при простом прибавлении периода к их переменным величинам. Новая гипотетическая функция должна принимать одинаковые значения при более сложных, более общих операциях, произведенных над ее переменной. Подхватив и продолжив эстафету обобщения понятия периодичности, Анри уже в первых работах продемонстрировал свою склонность к широким научным обобщениям.

Чтобы построить эту трансцендентную периодическую функцию более высокого порядка, нужно было найти порождающую ее группу преобразований. В отличие от обычного словоупотребления математики называют группой не произвольное скопление каких-то объектов, а только такое, которое в некотором смысле аналогично множеству целых чисел. Как известно, сумма любых целых чисел тоже является целым числом, то есть не выходит за пределы их множества. Причем от перестановки любого количества слагаемых результат сложения не меняется. Множество целых чисел включает в себя нуль, прибавление которого к любому числу не изменяет его. И, наконец, у каждого положительного целого числа имеется его антипод — такое отрицательное целое число, что их сложение дает в сумме нуль.

Подобные групповые свойства можно обнаружить не только у различных математических объектов — чисел, векторов, функций и так далее, но и у некоторых однотипных действий, преобразований, совершаемых над такими объектами. Так, совокупность всевозможных переносов периода вдоль оси времени, позволяющая построить простейшую периодическую функцию — синус или косинус, — составляет ее группу преобразований. В самом деле, два последовательных переноса (их сумма) равносильны одному переносу удвоенного периода и не меняют значения функции. Последовательность нескольких переносов можно совершать в любом порядке, функция все равно не изменится. Нулевым элементом этой группы можно считать отсутствие всякого переноса. Наконец, после каждого переноса периода по оси времени всегда можно совершить такой обратный перенос, который полностью его компенсирует, низводит до нуля. Такими же групповыми свойствами для эллиптической функции обладает совокупность переносов параллелограмма периода на плоскости.

Если новая функция относится к периодическим, для нее тоже должна найтись своя группа преобразований, свой «перенос» периода. Но дробно-линейному преобразованию переменной величины, при котором функция не меняет своего значения, соответствует весьма непростой «плоский период»: не параллелограмм, а какой-то криволинейный многоугольник. И это сразу затрудняет проблему нахождения такой группы преобразований. Не представляет труда выложить всю плоскость одинаковыми параллелограммами, плотно укладывая их один к другому, как паркет. Но как заполнить плоскость причудливыми фигурами, ограниченными неправильными криволинейными контурами, не оставляя просветов и обходясь без наползания, накладывания соседних фигур друг на друга? Пока не удастся решить этот вопрос, бессмысленно браться за поиски предполагаемой периодической функции. Сначала нужно убедиться, что существуют преобразования, в совокупности составляющие группу, применяя которые к одному-единственному криволинейному многоугольнику можно получить соседние, плотно к нему примыкающие многоугольники, затем более удаленные, смежные с ними, и так до тех пор, пока вся плоскость не будет покрыта плотно сколоченной причудливой мозаикой без зазоров и без перекрытий. Только тогда можно быть уверенным, что, зная функцию на одном таком многоугольнике, на одном периоде, можно воспроизвести ее на всей плоскости.

На пути решения проблемы встала самостоятельная, сама по себе сложная и интересная задача: построить дискретные группы преобразований, обладающие рассмотренными выше свойствами. Но задачу удобнее было решать в несколько иной формулировке: разбить всю плоскость на бесконечное число плотно прилегающих друг к другу, но неперекрывающихся криволинейных многоугольников. От теории дифференциальных уравнений мысль Анри проделала сложный и прихотливый путь к чисто геометрической задаче. Это умение улавливать связь между, казалось бы, совершенно разнородными и далекими друг от друга вопросами математики, преодолевая разделяющие их огромные мысленные дистанции, пройдет через все творчество Пуанкаре.

29
{"b":"138298","o":1}