Литмир - Электронная Библиотека
Содержание  
A
A

Чувство веселой иронии никогда не покидает Пуанкаре. Один из его слушателей рассказывал впоследствии об экзамене по астрономии, на котором какой-то студент далеко не блистал своими познаниями. Видя это, Пуанкаре задал ему совсем элементарный вопрос: "Сколько существует малых планет?" После некоторых колебаний экзаменующийся остановился на цифре 150. Пуанкаре, в ожидании ответа прохаживавшийся взад-вперед с руками, заложенными за спину, остановился и насмешливо изрек: "Должно быть, вы очень давно учили это".[29] Экзамены ему приходилось принимать и на степень лиценциатта, и даже на бакалавра. Иностранный ученый, увидевший это, заметил: "Поистине французы пользуются бритвой, чтобы обтесать бревно".

Каждый новый учебный год Пуанкаре, почти не повторяясь, излагает новую дисциплину. Обучая студентов, он образовывал и себя. В его курсе математической физики, читавшемся с 1887 по 1896 год, охвачена вся современная ему теоретическая физика: термодинамика и кинетическая теория газов, электростатика, теория потенциала, теплопроводность, турбулентность, капиллярность, упругость и другие обширные разделы этой науки. В отличие от большинства своих коллег по университету Пуанкаре не стремится публиковать свои лекции. Лишь благодаря инициативе студентов они были тщательно переписаны, отредактированы и изданы. Порой автор добавлял к ним предисловие. Среди студентов, участвовавших в издании, были Шази, Драш, Бэр, Борель, ставшие впоследствии известными учеными. Чаще всего эти лекции являлись их первой публикацией. Около половины двенадцатитомного курса математической физики было посвящено оптике, электричеству, электромагнитной теории и электрическим колебаниям, то есть тому комплексу вопросов, на котором после Максвелла были сосредоточены интересы физиков.

"В эту эпоху на континенте еще не освоились с идеями Максвелла, и нужно было, так сказать, перебросить мост между старым и новым образами мышления" — так комментирует Пуанкаре свое обращение к теории великого английского физика. Электромагнитная теория Максвелла читается им начиная с 1888 года. Дважды эти лекции издавались отдельной книгой под названием "Электричество и оптика" — в 1890 и в 1901 году. Их автор не скрывает своих намерений "облегчить для некоторых умов изучение электрических теорий". Ибо, несмотря на свою математическую строгость, теория Максвелла с большим трудом находит признание среди физиков.

"Трактат по электричеству и магнетизму", в котором Джеймс Кларк Максвелл подвел итоги двухвековому развитию учения об электрических и магнитных явлениях, был издан в 1873 году. Современники называли его "библией электричества". Книга содержала более тысячи страниц, из которых лишь десяток относился непосредственно к знаменитым уравнениям. Сами уравнения были разбросаны по разным частям, и было их довольно много — двенадцать. По характеру изложения «Трактат» был крайне сложным и неудобочитаемым, что затрудняло усвоение развиваемых там идей. Особенно раздражал он французских ученых, воспитанных на трудах своих великих предшественников, начиная с Лапласа и кончая Коши. Когда "читатель впервые открывает книгу Максвелла, к его восхищению примешивается чувство беспокойства, а подчас даже и недоверия, — пишет Пуанкаре во введении к своим лекциям "Электричество и оптика". — Только после глубокого знакомства и ценой больших усилий удается рассеять это чувство. Впрочем, у некоторых выдающихся умов оно так и осталось навсегда".

Многие ученые, столкнувшись с теорией Максвелла, оказывались в роли того анекдотичного персонажа, который, прослушав лекцию об устройстве и принципе действия телефона, заявил, что ему все понятно, за исключением того, как голос передается по проводам. Пуанкаре приводит высказывание одного своего коллеги, глубоко изучавшего труд Максвелла: "Я все понимаю в его книге, за исключением того, что такое наэлектризованный шар". Знаменитый голландский физик Г. А. Лоренц, которому суждено было впоследствии развить и продолжить эту электромагнитную теорию, познакомившись в молодости с уравнениями Максвелла, не смог понять их физического смысла и обратился за разъяснениями к переводчику сочинений Максвелла. Но переводчик заявил, что теория Максвелла — чистая математика, не имеющая никакого физического содержания.

С трудностями объяснения новой физической теории столкнулись и те немногие ученые, которые пытались распространить ее идеи с университетских кафедр. В Америке теорию Максвелла пропагандировал профессор Йельского университета Дж. У. Гиббс, один из основоположников статистической механики. Среди европейских ученых следует отметить Л. Больцмана, который окрестил «Трактат» книгой "за семью печатями". Пуанкаре одним из первых разобрался в многосложном изложении Максвелла. Его правильная и стройная интерпретация идей английского ученого помогла рассеять невразумительную путаницу у комментаторов этой теории. В своих лекциях Пуанкаре проводит глубокий анализ различных попыток теоретического обобщения экспериментально установленных законов электричества и магнетизма. Он подробно разбирает электродинамику Ампера, устанавливает ее связь с теоретическим подходом Гельмгольца и постепенно подводит слушателей к выводу о преимуществах уравнений Максвелла, наиболее полно охватывающих электромагнитные процессы и предсказывающих неизвестные еще физике явления.

Важнейшее предсказание было подтверждено в 1888 году немецким физиком Генрихом Герцем, соединявшим в себе черты блестящего экспериментатора и глубокого теоретика. Ему удалось получить и обнаружить электромагнитные волны, существование которых предвещала теория Максвелла. Однако измеренная им скорость распространения этих волн оказалась на 40 процентов меньше предполагавшейся величины — скорости света. Подтверждая общий вывод теории, опыт Герца ставил под сомнение заключение об электромагнитной природе света.

Пуанкаре в этом году только еще приступил к своим лекциям по теории Максвелла. Но все перипетии ее развития живо интересуют его ум и обсуждаются им на самом высоком профессиональном уровне. Внимательно просмотрев теоретические выкладки Герца, он находит у него ошибку в расчетах колебаний генератора. "Это исправление было легким, — скажет он впоследствии, — но важно было сделать его быстро, так как в тот момент, если бы эта ошибка осталась незамеченной, она могла задержать научный прогресс". Исправленная величина скорости распространения электрических колебаний практически совпала со скоростью света. Эксперимент оправдал обобщение электромагнитной теории на оптические явления.

Вопрос о герцевских колебаниях вновь осложнился после обнаружения швейцарскими учеными множественного электрического резонанса, казавшегося довольно парадоксальным. И вновь вмешательство Пуанкаре приносит решение проблемы. Отвергнув доводы авторов, он объяснил это явление быстрым затуханием колебаний во времени. По этому поводу Герц писал Пуанкаре: "Их (экспериментаторов) объяснение мне совершенно не нравится. Мой взгляд положительно близок к Вашему, может быть, даже совсем тождествен". Проведенная затем экспериментальная проверка подтвердила данное Пуанкаре истолкование.

Экспериментальные исследования по электромагнетизму занимают Пуанкаре ничуть не меньше, чем теоретические выводы и заключения. Все наиболее значительные опыты того времени проходят при явном или неявном соучастии и сопереживании знаменитого французского теоретика. Внимание его однажды привлекают попытки обнаружить магнитное поле конвекционных токов, то есть токов, обусловленных перемещением наэлектризованных тел. Еще Фарадей утверждал, что при движении наэлектризованного шара должны наблюдаться точно такие же эффекты, как и при прохождении электрического тока в неподвижном проводнике. В 1876 году американский физик Роуланд действительно показал наличие у конвекционного тока магнитного поля. Французский исследователь Кремье повторил опыт Роуланда, но уже по усовершенствованной схеме — с переменным электрическим зарядом. Никакого магнитного поля он не обнаружил. Через год Пандер, ученик Роуланда, воспроизводит опыты Кремье и вновь подтверждает результат американского ученого. Возникла противоречивая ситуация, требовавшая немедленного разрешения.

вернуться

29

[29] К этому времени было обнаружено уже около 450 таких небесных тел.

58
{"b":"138298","o":1}