Литмир - Электронная Библиотека
Содержание  
A
A

"Парменид" учит не только об Едином (или одном) и ином как о двух, с одной стороны, взаимно исключающих друг друга, а с другой стороны, взаимно совпадающих категориях. Может быть, самым интересным является в этом диалоге как раз учение о сплошном становлении, в котором как раз и совпадают одно и иное (главнейшие тексты здесь - 144b-e, 158cd, 164d, 165a-с). В "Пармениде" (165а-с) прямо говорится о таком беспредельном (apeiron), в котором нет ни начала, ни середины, ни конца. Это в каком-то роде текучая сущность и сплошно-становящаяся определенность. Сплошную текучесть мы выше находили также и в "Филебе" (15b, 16cd, 24а-с), где весьма отчетливо выражено представление о становящейся непрерывности и где есть интереснейшее рассуждение о несоизмеримости становящейся сущности с ее разделением на целые или дробные части (25а, ср. о соизмеримости и несоизмеримости - Legg. VII 820с, Phileb. 28а).

В "Тимее", как мы увидим ниже, понятие материи тоже сконструировано при помощи учения о непрерывном становлении (особенно 30а, 35а-b, 36cd, 46e, 48а).

Следовательно, отношение этой категории к платоновской эстетике определяется и диалектикой числа как единства двух противоположностей, а именно "предела" и непрерывной текучести, "беспредельного", и погруженностью числа в материальную текучую непрерывность, откуда и возникают все прекрасные формы и "виды".

5. Единство и множество (многообразие)

К области числовых категорий, несомненно, относится единство и множество. Все тексты Платона буквально пересыпаны рассуждениями или, по крайней мере, упоминаниями об этом "едином" (hen) и "многом" (polla). Подобными выражениями настолько все пестрит у Платона, что нам уже не раз приходилось касаться этих категорий и еще придется коснуться не раз. Однако если раньше мы говорили об едином и многом с точки зрения платоновского метода, а позже будем говорить с точки зрения платоновской художественной действительности, то сейчас необходимо будет сказать об едином с точки зрения анализа отдельных категорий и с точки зрения терминологии. Сделаем мы это, однако, кратко, посвятив этим категориям всего несколько замечаний, да и то разве только ради системы и полноты терминологии.

Прежде всего необходимо отметить по крайней мере троякое понимание единого у Платона (Parm. 153а-154а): первое единое выше всякого бытия и сущности (159с - "единое в себе" или "истинно-единое"; ср. Soph. 244b-245а-d); второе единое есть начало всякого исчисления, - это, попросту говоря, обычная единица; и третье единое - такое, которое является единым во многом, или единством многообразия, и в этом качестве, будучи в начале множества, оно раньше всего прочего, а будучи в конце всякого множества и завершая его, оно позже всего прочего. Для эстетики имеет значение отнюдь не только это третье понимание. Мы уже видели весьма значительную важность для эстетики также и первого единого. К этому необходимо прибавить, что Платон очень бдительно следит за категориальной чистотой своих понятий единого и многого. О том, что наблюдение обычных вещей, несмотря на наличие в них единого и многого, очень мало дает для самих этих категорий и является пустой банальностью, об этом не раз читаем у Платона (Parm. 129d, Soph. 25lab, Phileb. 14d, 15a).

Отметим тексты, где Платон наиболее ярко говорит об единстве понятия и о подчиненности этому единству всего того разнообразного, что относится к данному понятию: Phaedr. 249b, 266b, Theaet. 146c, 147d, 148d, 185a-c, R.P. X, 596a, Parm. 158b-d (cp. 164d - 165c), Phileb. 15d, 19b, 23c, 25cd, 26d. О "неделимости" космического единства читаем в "Тимее" (35а, 36с). Особенно любит Платон говорить о сведении множества к "одной идее". Эта "одна (или единая) идея", которую он понимает пока только логически, есть вообще любимое выражение философа (Phaedr. 265d, 273e, Theaet. 184d, 203c-e, 205c, R.P. V 476a, 479a, VI 507b, Parm. 129a, 131b, 132a, 157d, Phileb. 16cd, Soph. 253de, 254a-c). Подчеркиваем еще и еще раз, что термин "идея" совершенно не имеет здесь никакого онтологического смысла, а употребляется только чисто логически для обозначения единства и общности соответствующего разнообразного. О термине monoeides, "едино-видный", "подчиненный одной идее", "единоэйдетический" (например, Phaed. 78d, 80b, Theaet. 205d) мы уже говорили выше (стр. 301). Может быть, только в одном тексте из рассуждений этого рода единство трактуется до некоторой степени онтологически, то есть независимо от составляющего его множества, а именно как henades, "идеальные единства", или monades, "идеальные единичности" (Phileb. 15ab).

Нечего и говорить о том, что огромное количество текстов с чисто логическим значением единства и множества в конце концов все-таки заостряется у Платона в его онтологическую концепцию особой идеальной действительности. Нужно только соблюдать историческую справедливость и не отрицать того, что платоновские идеальные общности часто являются просто родовыми понятиями без всякого намека на онтологизм. Но, конечно, уже и при обсуждении древнейших учений об едином или единстве, как, например, у элейцев, Платон волей-неволей принужден понимать свое единство вполне онтологически, то есть в данном случае материалистически или по крайней мере натурфилософски (Soph. 242de).

Но уже в "Федоне" можно проследить, как мысль Платона постепенно пробивается к единству как к идеальной действительности, когда он отказывается понимать получение суммы из отдельных слагаемых, если эта сумма не существует сама по себе. Тут не помогает никакое сложение или вычитание единиц (Phaed. 96е, 97а, 101с). В дальнейшем Платон вообще строго разграничивает обывательские арифметические операции, когда очень нечетко представляют себе существо отдельных чисел, и философское понимание чисел как того, что относится к истинно-сущему (Phileb. 56de). Окончательно идеалистическую концепцию единства как особого рода сверхчувственной и только мыслимой действительности мы находим в "Государстве", где на первом плане не только абсолютная четкость различения чисел (VII 524b), в отличие от чувственной их спутанности, но и взгляд, что "учение об одном становится возводителем души и направителем к созерцанию сущего" (524е - 525а). Об этом у Платона есть целое большое рассуждение (525b-526а).

Между прочим, Платон защищает здесь весьма тонкую мысль, которую никак не могут понять даже многие современные математики. Обычно думают, что двойка состоит из двух единиц, тройка из трех единиц, четверка из четырех единиц и т.д. Это совершенно правильно, но, с точки зрения Платона, банально и свидетельствует только об обывательском подходе к счету. На самом же деле двойка, делясь на две единицы, в то же самое время ни в каком случае не делится ни на две и ни на какое другое число частей. Двойка есть совершенно самостоятельная числовая индивидуальность, которую никак нельзя получить присоединением одной части к другой. Это же самое касается и тройки и четверки и, мы бы сказали, также и всех дробных, всех рациональных и иррациональных чисел. Если бы число состояло только из перечисления единиц, то мы не могли бы понять таких слов, как "сто", "тысяча" или "миллион", поскольку, произнося такого рода слова и вполне их понимая, мы в это время вовсе не имеем в голове ста, тысячи или миллиона отдельных и изолированных единиц. Ясно, что каждое из этих чисел налично в нашем уме как нечто безусловно неделимое. Здесь Платоном руководит общее диалектическое учение о том, что целое представляет собою новое качество по сравнению с его частями. Только почему-то к числам это элементарное диалектическое учение у большинства исследователей Платона не прилагается. Такие неделимые двойку, тройку, четверку и т.д. Платон называет истинными числами, или числами в себе. Поэтому строгий анализ платоновского текста повелительно принуждает нас находить в его "истинно-сущем" не только какую-то идеальную действительность в гипостазированной форме, но и самое элементарное, очевиднейшее усмотрение того, что всякое число есть неделимое целое, своеобразное единство противоположностей и каждый раз вполне специфическая индивидуальность, хотя бы оно было не только целым числом, но и дробью, и хотя бы оно было не только рациональным числом, но также иррациональным.

110
{"b":"830363","o":1}