Самая категория числа у Платона после кратких интерпретаций ее у Лотце и Брандиса впервые мастерски проанализирована Г.Когеном (1879), который в ясной форме показал недостаточность изложения этого вопроса у Аристотеля и обнаружил антиметафизическую и чисто познавательную ценность как платоновского учения об идеях, так и платоновского учения о числах{56}.
Обозрение обширной литературы о платоновской теории числа обнаруживает, что современная наука, во всяком случае, пришла к четырем несомненным тезисам.
Во-первых, выясняется, что число пронизывает у Платона решительно все бытие с начала до конца, сверху донизу. Уже тот первопринцип, о котором Платон трактует в VI кн. "Государства", Платон склонен рассматривать как Единое, то есть понимает его, в сущности, арифметически. Платоновский Ум представляет собой уже раздельность бытия, а всякая раздельность возможна только благодаря числу. Мировую душу Платон тоже понимал как самодвижное число. О космосе же и говорить нечего. У Платона он весь состоит только из математических определений. Число до такой степени пронизывает всю платоновскую действительность, что, можно сказать, она вся только и состоит из одних чисел. В дальнейшем мы убедимся, что эта числовая пронизанность не только всего неживого, но и всего живого у Платона, включая человека и общество, достигает такой исключительности и претендует на такую общезначимость, которая заставляет нас считать Платона безусловно отцом или прародителем кибернетики.
Необходимо к этому прибавить, что появление математического естествознания в XVII в., равно как и вся подготовительная работа к этому в эпоху Возрождения, только потому и были возможны, что на смену средневекового официального аристотелизма выступили платонизм и неоплатонизм. Но это требует особого историко-философского исследования. Мы не ошибемся, если назовем философию и эстетику Платона не просто объективным идеализмом, но и объективным количественным идеализмом.
Во-вторых, литература о платоновской теории чисел с полной ясностью обнаруживает, что Платон понимал число не просто как формальный результат простого арифметического счета. Единицы, входящие у него в каждое число, не просто им перечисляются, но еще и мыслятся определенным образом расположенными друг в отношении друга, определенным образом упорядоченными и представляющими собою то, что сейчас математики называют "упорядоченным", или, лучше сказать, "вполне упорядоченным множеством". Другими словами, сейчас нужно считать установленным, что каждое число Платон понимает как ту или иную структуру. Эту структуру Платон снимает как бы с самих вещей. Ведь каждая вещь обладает своей собственной формой, и форм этих бесконечное количество. Отвлекаясь от материального содержания вещи и оставляя только те точки, которые указывают на строение самой вещи, мы и получаем группу определенным образом расположенных точек; а эта группа точек и есть то, что Платон называет числом. Таким образом, в настоящее время установлено структурное понимание числа у Платона. О том, что это структурное понимание унаследовано им от пифагорейцев, тоже писали очень много{57}.
В-третьих, современное платоноведение установило не просто смысловую природу числа у Платона, но и природу силовую, энергийную. Число у Платона не просто мыслится, не просто есть умственная абстракция и даже не просто самостоятельно существующий смысловой предмет, то есть не просто есть структура. Эта числовая структура активно определяет собою формы вещей; а ведь если вещь лишена формы, то она и вообще перестает существовать. Поэтому число у Платона есть то, что создает собою вещи и весь их распорядок. Число является как бы каким-то заряженным оружием, и заряженность эта есть заряженность бытием и самой действительностью. Именно здесь объективный, количественный идеализм Платона получает свое наибольшее заострение.
Наконец, в-четвертых, отсюда выясняется и подлинная эстетическая роль категорий числа у Платона. Когда мы выше говорили, что эстетический принцип у Платона представляет собой прежде всего слияние внутреннего и внешнего в одно нераздельное целое и что с этим соединяется у Платона также и слияние созерцательного с производственно-жизненным, то мы еще не знали тогда, что все это имеет отношение в первую очередь к числу. Теперь же мы можем констатировать, что у Платона в первую очередь именно число есть такое внутреннее основание вещей, которое проявляется в их внешнем состоянии и не только проявляется, но как раз даже создает, творит собой всю эту внешнюю стихию вещи. Получается, таким образом, что число, будучи в своей основе идеальной структурой и даже больше, чем идеальной, так как оно наряду со всем прочим создает собою и эту идеальную структуру вещи, в то же самое время оказывается и максимально внешним результатом этой идеальной структуры, чем-то максимально жизненным, чем-то таким, что необходимо называть производственным осуществлением вещи. Поэтому даже если бы у Платона и не было учения об идеях, то одно учение о числах уже создавало бы у него цельную и продуманную эстетическую систему. Число есть самое внутреннее и самое внешнее в вещах, но оно же есть и полное тождество внутреннего и внешнего, неустанно бурлящее все новыми и новыми числовыми энергиями - формами. А это и значит, что числовое бытие у Платона есть прежде всего бытие эстетическое.
Так можно было бы в кратчайшей форме обобщить результаты напряженнейшей работы современной науки в области платоновской теории чисел.
2. Основное учение о числе
Платон умел прекрасно выводить число при помощи своего диалектического метода из понятия бытия, которое, с его точки зрения, либо непознаваемо (что он отрицал), либо ясно и раздельно, то есть числовым образом оформлено (Parm. 144а, 153а). С диалектическим выведением числа как единства противоположностей, предела и беспредельного в "Филебе" (16b, 25а) мы уже встречались выше, где нами был установлен также и структурный характер числа в результате такого выведения.
Эту числовую оформленность бытия он четко отличал от всякой другой его оформленности, качественной, хотя бы эта последняя и была правильной (Crat. 432а), отличал он ее также и от соотношения понятий, поскольку, например, две прекрасные вещи предполагают единую красоту вообще, оставаясь в числовом отношении разными (Hipp. Mai. 303а). Отсюда то огромное значение, которое Платон находил в различии отвлеченных и именованных чисел (R.P. VII 524b, Phileb. 56с-е), придавая этому глубокий гносеологический смысл (Theaet. 195e-196b). Следовательно, как ни универсально число для Платона, оно отлично и от всякой качественности и от понятийных операций, а предполагает свою собственную уже чисто числовую структуру, о которой можно спорить только в порядке временного незнания или недоразумения (Euthyphr. 7b). В этом отношении Платон часто оказывался последователем древних пифагорейцев.
Четность числа, предполагающая его разделение на равные части, и нечетность числа, выражающая полную невозможность такого распадения, понимались Платоном чрезвычайно конкретно и красочно и уже по одному этому имеют ближайшее отношение к эстетике. Так, олимпийским богам подобает нечет, подземные же боги характеризуются чётом (Legg. IV 717). Но это касается не только богов, но и вообще всего существующего (X 895е), хотя арифметическое понятие чёта и нечета - совершенно чистое, самостоятельное и не зависит от тех вещей, к которым оно применяется (Gorg. 451с, ср. 460e, a также Prot. 356а-357а), будучи вполне универсальным (Politic. 262de).
Разделение чисел на рациональные и иррациональные также связано с глубочайшей проблемой возможного распадения идеального государства и также имеет мало общего с обывательскими абстрактно-арифметическими представлениями. Об этом мы трактуем ниже при интерпретации так называемого платоновского числа в одном из самых трудных текстов из всего Платона (R.P. VIII 546d). Имеется у Платона и менее чудное пояснение иррациональности - на примере проведения диагонали в квадрате, которая оказывается несоизмеримой со стороной квадрата. Однако и здесь Платон оказывается верным античному геометризму, именуя рациональные числа квадратными, а иррациональные числа - продолговатыми (Theaet. 147cd). Числа, возникающие из трех множителей, он понимает как трехмерно-телесные числа (148b).