Литмир - Электронная Библиотека
Содержание  
A
A

д) Рассмотрите частный случай, когда скорость выброса очень велика. Покажите, что при βвыбр, стремящейся к скорости света (т.е. при очень больших θвыбр), необходимая для достижения данного значения параметра скорости ракеты выбрасываемая масса покоя стремится к нулю. Из этого следует что использование света для создания тяги ракеты соответствует полному переводу массы покоя топлива в энергию излучения; уравнение движения тогда принимает вид

θ

=

ln

𝑀₁

𝑀

для ракеты с

фотонными двигателями

(110)

е) Иногда высказывают следующее обобщающее заключение: «Наиболее экономична ракета с фотонной тягой». Покажите, что это утверждение и верно, и ошибочно одновременно. Обсуждение. Найдите «коэффициент полезного действия» для двигателей, тягу которых создают световые вспышки. Насколько экономично продолжать ускорять «шлак» (использованные элементы) вместе с полезным грузом? Существует ли хоть один тип взаимодействия элементарных частиц, при котором вообще не остаётся «шлака» и образуется лишь свет (т.е. гамма-лучи)? См. стр. 162 и упражнение 97.

ж) Чему равно наименьшее отношение масс (отношение начальной массы к конечной, когда горючее исчерпано) для идеальной ракеты, в которой масса полностью превращается в свет, при котором ракета ускоряется из состояния покоя до такой скорости, при которой течение времени замедляется в десять раз? Чему равно это отношение масс в случае наибольшей скорости выброса, достижимой в ракетах с химическими двигателями (около 4000 м/сек)? Замечание. В технической литературе часто говорится об «удельном импульсе» (обозначаемом через 𝐼) ракетного горючего; например, 𝐼=260 сек для керосина с жидким кислородом и 350 сек для жидкого водорода с жидким кислородом. Умножьте эти величины на 9,8 м/сек², чтобы перейти к физическим единицам (скорости выброса в м/сек или к импульсу в кг⋅м/сек, сообщаемому ракете каждым килограммом отработавшего топлива). Последний способ выражения через импульс в противоположность использованию единиц времени применим и на Луне, где 𝑔≈(1/6)*9,8 м/сек², и на Земле, где 𝑔=9,8 м/сек². ▼

59*. Парадокс центра масс

Пусть в системе отсчёта ракеты вдоль оси 𝑥 в состоянии покоя закреплена длинная труба. С двух противоположных концов в неё одновременно и с одинаковой скоростью (с точки зрения системы отсчёта ракеты) выстреливаются два одинаковых пушечных ядра. Эти ядра упруго сталкиваются в середине трубы и разлетаются вновь к её концам. До того как ядра достигают этих концов, их наглухо закрывают, и в дальнейшем ядра всё время движутся взад и вперёд в трубе без трения.

Физика пространства - времени - _126.jpg

Рис. 99. Пушечные ядра, летящие навстречу друг другу.

а) Опишите движение центра масс этих двух ядер в системе отсчёта ракеты.

б) Одновременно ли производятся в лабораторной системе отсчёта выстрелы, посредством которых ядра вводятся в трубу? Опишите движение центра масс ядер в лабораторной системе отсчёта. При этом удобно воспользоваться диаграммой пространства-времени. Инвариантно ли положение центра масс в теории относительности?

в) Предположим теперь, что в системе отсчёта ракеты труба не закреплена, а лежит на абсолютно гладкой поверхности. Рассмотрите движение центра масс трубы в обеих системах отсчёта. Как движется в каждой из систем отсчёта центр масс системы, включающей трубу плюс оба пушечных ядра? ▼

60*. Второй вывод релятивистского выражения для импульса

а) На рис. 85 в системе отсчёта ракеты между моментами столкновения двух шаров и попадания шара 𝐴 в верхнюю стенку проходит интервал времени Δ𝑡'. В лабораторной системе отсчёта этот промежуток времени равен Δ𝑡. Пользуясь формулами преобразования Лоренца, найдите связь между этими двумя промежутками времени, Δ𝑡' и Δ𝑡. Найдите связь между значениями 𝑦-компоненты скорости шара 𝐴 в обеих системах (см. упражнение 20). Приняв за β скорость шара 𝐴 в системе отсчёта ракеты, покажите, что 𝑦-компонента скорости шара 𝐴 в лабораторной системе отсчёта β𝐴𝑦,лаб определяется выражением

β

𝐴

𝑦

,

лаб

=

β

ch θ𝑟

.

 

Физика пространства - времени - _127.jpg

Рис. 100. Компоненты скорости шаров 𝐴 и 𝐵 в лабораторной системе отсчёта до столкновения.

б) Проанализируйте теперь это столкновение в лабораторной системе отсчёта. На основании его симметрии в лабораторной системе и в системе отсчёта ракеты проверьте правильность данных о компонентах скоростей, приведённых на рис. 100. Вспомните, что импульс частицы должен быть направлен вдоль её движения (разд. 11). Поэтому треугольник векторов скорости шара 𝐴 до и после столкновения подобен треугольнику векторов импульса шара 𝐴 до и после столкновения (рис. 101). Предположим, что шар 𝐵 в лабораторной системе отсчёта движется настолько медленно, что его импульс можно определять по ньютоновской формуле 𝑚β. Потребуем теперь, чтобы изменение импульса шара 𝐴 в процессе столкновения было равно по величине и противоположно по направлению изменению импульса шара 𝐵. Пропорциональность соответственных сторон подобных треугольников даёт равенство:

Горизонтальный

пунктирный отрезок

на диаграмме импульса

Вертикальный

пунктирный отрезок

на диаграмме импульса

=

Горизонтальный

пунктирный отрезок

на диаграмме скорости

Вертикальный

пунктирный отрезок

на диаграмме скорости

.

Физика пространства - времени - _128.jpg

Рис. 101. Диаграммы скорости и импульса шара 𝐴 в лабораторной системе отсчёта.

Покажите, что отсюда следует выражение

𝑝

 𝑥

=

𝑚 sh θ

𝑟

для 𝑥-компоненты импульса быстро движущегося шара 𝐴.

в) В пределе малых 𝑦-компонент скоростей величина 𝑝 𝑥 становится равной полному импульсу 𝑝 шара 𝐴, а параметр относительной скорости θ𝑟 становится равным параметру θ шара 𝐴. Отсюда следует выражение для релятивистского импульса частицы

𝑝

=

𝑚 sh θ

.

61*. Второй вывод релятивистского выражения для энергии

Физика пространства - времени - _129.jpg

Рис. 102. Анализ упругого лобового столкновения частиц разных масс в ньютоновской механике. Скорости частиц до и после соударения в лабораторной системе отсчёта (верхний рисунок) и в системе отсчёта ракеты (нижний рисунок), найденные по ньютоновскому закону сложения скоростей.

а) Сохранение ньютоновского импульса. Рассмотрим лобовое упругое соударение частиц различных масс покоя (𝑚₁ и 𝑚₂). Частица 1 отскакивает от частицы 2, потеряв часть своей скорости и передав часть импульса частице 2. Рассмотрите это столкновение с ньютоновских позиций. Основываясь на рис. 102, покажите, что в лабораторной системе отсчёта из ньютоновского закона сохранения импульса следует уравнение

70
{"b":"651120","o":1}