Литмир - Электронная Библиотека
Содержание  
A
A

(

Δ

𝑡)²

-

(

Δ

𝑥)²

=

(

Δ

𝑡')²

-

(

Δ

𝑥')²

=

(

Δ

𝑡ʺ)²

-

(

Δ

𝑥ʺ)²

=

(2

м

)

²

.

(6)

Интервал 𝐴𝐵 имеет одну и ту же величину в системах всех ракет!

Забудем теперь о посланной вспышке, отражателе и о возвращении этой вспышки. Ведь это лишь средства для достижения цели. Они помогли выяснить, какая величина имеет одно и то же значение в различных системах отсчёта. Теперь сосредоточим внимание на этой величине — интервале, оставив в стороне подробности её вывода.

Что одинаково в двух инерциальных системах отсчёта?

Что в них почти одинаково?

Что различной?

Что мы выяснили? Два события, 𝐴 и 𝐵 происходят в одном и том же месте в системе отсчёта ракеты (Δ𝑥'=0), но в разное время (Δ𝑡'=2 м). В лабораторной системе отсчёта эта же пара событий происходит в пространстве на расстоянии Δ𝑥, и, чем быстрее движется ракета, тем больше это расстояние. Этот вывод никого не удивит, и многие с полным правом скажут: «Да это же более чем очевидно!». Удивительно другое. Во-первых, промежуток времени Δ𝑡 между двумя событиями, зарегистрированный в лабораторной системе отсчёта, имеет другую величину, чем зарегистрированный в системе ракеты. Во-вторых, промежуток времени между событиями 𝐴 и 𝐵 по данным, отпечатанным соответствующими двумя хронографами в лаборатории, превышает промежуток времени между теми же двумя событиями, зарегистрированный такими же часами в ракете: Δ𝑡 ≥ Δ𝑡'. В-третьих, пропорция

Δ𝑡

Δ𝑡'

=

1

+

Δ𝑥

2

⎞²

⎤½

,

в которой оказался увеличенным промежуток времени (см. табл. 5), близка к единице (увеличение очень мало), если мало расстояние, которое прошла ракета в промежутке между событиями 𝐴 и 𝐵. Но если ракета движется очень быстро, разность Δ𝑥 очень велика и пропорция, характеризующая несоответствие двух времён, может быть громадной. В-четвёртых, несмотря на эту только что обнаруженную разницу во времени, зарегистрированном в двух разных системах отсчёта, и несмотря на давно уже известную разницу в пространственном расстоянии между событиями в разных системах отсчёта (Δ𝑥 ≠ Δ𝑥' = 0), существует тем не менее величина, действительно равная в лабораторной системе отсчёта тем же двум метрам промежутка светового времени между событиями 𝐴 и 𝐵, которые были зарегистрированы в системе отсчёта ракеты. Эта величина — интервал

(Интервал)

=

(

Δ

𝑡)² - (

Δ

𝑥)²

.

У ракеты может быть очень большая скорость, и тогда Δ𝑥 тоже будет очень большим. Но и Δ𝑡 в этом случае будет очень большим. Более того, величина Δ𝑡 оказывается в точности «подогнанной» к величине Δ𝑥, так что выражение (Δ𝑡)² - (Δ𝑥)² равно (2 м)² вне зависимости от того, чему именно равны порознь Δ𝑥 и Δ𝑡.

Все четыре замечательные идеи частной теории относительности иллюстрируются одной и той же диаграммой

Все перечисленные отношения можно увидеть, взглянув на рис. 13, а. Длина гипотенузы первого прямоугольного треугольника равна Δ𝑡/2 а его основание имеет длину Δ𝑥/2. Утверждение, что выражение (Δ𝑡)² - (Δ𝑥)² обладает универсальной величиной (или, иначе, что (Δ𝑡/2)² - (Δ𝑥/2)² обладает универсальной величиной), значит лишь, что высота этого прямоугольного треугольника строго фиксирована (равна на нашей диаграмме 1 м), с какой бы скоростью ни летела ракета. Но что именно лежало в основе доказательства того, что (Δ𝑡)² - (Δ𝑥)² равняется (2 м)² независимо от скорости полёта ракеты? В основе лежал принцип относительности, согласно которому законы физики одинаковы во всех инерциальных системах отсчёта. Мы воспользовались здесь этим принципом двумя совершенно различными способами. Во-первых, мы вывели из него заключение, что длины, перпендикулярные направлению относительного движения систем, получаются одинаковыми при измерении в этих системах (лабораторной системе и системе отсчёта ракеты). В противном случае одну систему было бы можно отличить от другой по более коротким поперечным масштабам. Во-вторых, из принципа относительности мы заключили, что скорость света должна быть одинаковой как в лабораторной системе отсчёта, так и в системе ракеты (этот вывод подтверждается экспериментом Кеннеди — Торндайка). А если эта скорость одинакова, то из факта большей длины траектории световой вспышки в лабораторной системе (сумма длин гипотенуз двух треугольников), чем в системе отсчёта ракеты, где свет совершает простое движение взад и вперёд (сумма высот двух треугольников: 1 м вверх и столько же вниз), мы непосредственно заключаем, что время между событиями 𝐴 и 𝐵 в лабораторной системе больше, чем в системе отсчёта ракеты.

Короче говоря, один элементарный треугольник на рис. 13, а изображает сразу 4 замечательные идеи, лежащие в основе всей частной теории относительности: инвариантность длин, поперечных движению; инвариантность величины скорости света; зависимость пространственной и временно'й координат от выбора системы отсчёта; инвариантность интервала.

Парадоксально ли различие между промежутками времени, прошедшего в лабораторной системе и в системе отсчёта ракеты?

Итак, в рис. 13, а вкратце содержится вся частная теория относительности в легко запоминающемся виде. Однако проделанный анализ приводит к тому, что на первый взгляд кажется нелепостью. Какой смысл можно вообще усмотреть в том, что промежуток времени между двумя событиями больше в лабораторной системе отсчёта, чем в системе ракеты? Разве мы не приводили уже в качестве довода, что «длины, перпендикулярные направлению относительного движения систем», одинаковы, «в противном случае одну из систем было бы можно отличить от другой по более коротким поперечным масштабам?» Как же быть в этом случае с разными промежутками времени в двух системах отсчёта? Разве это различие не даст возможности физически провести различие между той и другой системами? И разве возможность такого различия не исключена принципом относительности, утверждающим, что одна инерциальная система отсчёта нисколько не хуже другой?

Сравнение относительности времени (Лоренц) с относительностью выбора направления на «север» (Эвклид)

Физика пространства - времени - _18.jpg

Рис. 14. Удалённость точки 𝐵 от точки 𝐴 по координате «север—юг» («северное склонение 𝐵 относительно 𝐴») зависит от выбора направления на север.

Чтобы ответить на эти вопросы, вернёмся к притче о землемерах. Возьмём точку 𝐵 на рис. 14. Она расположена на 1 м прямо к северу от другой точки 𝐴 согласно построениям ночного землемера (определение направления на север по Полярной звезде). Рассмотрим теперь положение точки 𝐵 с позиций дневного землемера (ориентация на север по магнитной стрелке). Будет ли разность координат Δ𝑦 между 𝐴 и 𝐵 (на языке землемеров — северное склонение) также равна 1 м в дневной системе? Нет, Δ𝑦 здесь меньше, чем 1 м! Почему же? Дело в том, что высота (Δ𝑦) прямоугольного треугольника короче, чем его гипотенуза (1 м). Значит ли это, что правила триангуляции в дневной системе координат отличаются от этих правил в ночной системе координат? Конечно, нет! Точно так же нет дефектов в конструкции и ходе лабораторных часов, на которые можно было бы списать большую длительность промежутка времени 𝐴𝐵. Это «расхождение» в показаниях лабораторных часов и часов на ракете обусловлено лишь самой природой геометрии пространства-времени. Так уж устроен мир! В табл. 6 проведена параллель между геометрией пространства-времени по Лоренцу и эвклидовой геометрией мира землемеров.

13
{"b":"651120","o":1}