Литмир - Электронная Библиотека
Содержание  
A
A

1 В русском переводе эти фрагменты набраны более мелким шрифтом. (Прим. перев.)

Вывод полевого уравнения Эйнштейна

В период чтения этих лекций по гравитации Фейнман стремился к тому, чтобы проквантовать гравитацию, т.е. создать синтез общей теории относительности и фундаментальных принципов квантовой механики. В целом подход Фейнмана к общей теории относительности сформирован его желанием получить квантовую теорию гравитации настолько непосредственным образом, насколько это возможно. Для этой цели тонкости геометрического подхода кажутся отвлечением от основной темы; в частности, общепринятый геометрический подход к гравитации затемнён разговором об аналогии между гравитацией и электромагнетизмом.

Используя ретроспективный взгляд, мы можем получить классическую электродинамику Максвелла, исходя из того наблюдения, что фотон является безмассовой частицей спина 1. Вид квантовой теории безмассовой частицы со спином 1, взаимодействующей с заряженной материей, в большой степени ограничивается фундаментальными принципами такими, как Лоренц-инвариантность и сохранение вероятности. Самосогласованная версия квантовой теории - квантовая электродинамика определяется в классическом пределе классическими полевыми уравнениями Максвелла.

Ободрённый этой аналогией, Фейнман рассматривает квантовую теорию гравитации ”просто как другую квантовую теорию поля”, такую как квантовая электродинамика. Так, в лекциях 1 - 6 он задаёт вопрос: можем ли мы найти разумную квантовую теорию поля, описывающую безмассовые кванты со спином 2 (гравитоны), взаимодействующие с веществом в обычном плоском пространстве-времени Минковского? Классический предел такой квантовой теории должен был бы определяться уравнением поля эйнштейновской теории относительности. Поэтому, для того, чтобы убедиться в виде классической теории, Фейнман привлекает внимание к характерные особенности квантовой теории, которые должны лежать в основании теории. Геометрические идеи проникают в обсуждение Фейнмана только через ”чёрный вход” и развиваются первоначально как технические средства для того, чтобы помочь в построении приемлемой теории. Так, например, тензор кривизны (Римана), являющийся узловым пунктом общепринятой формулировки общей теории относительности, вводится Фейнманом первоначально (6.4) только как средство для построения членов в гравитационном действии, удовлетворяющем требуемым свойствам инвариантности. Действительно, только в лекции 9 (разделе 9.3) лекций Фейнман показывает, что кривизна имеет интерпретацию через параллельный перенос касательного вектора по искривлённому пространственно-временному многообразию.

Критической особенностью квантовой теории является то, что безмассовый гравитон со спином 2 имеет только два состояния спиральности. Таким образом, классическое гравитационное поле также должно иметь только две динамические степени свободы. Тем не менее, классическое гравитационное поле, которое соответствует частице со спином 2, является симметричным тензором ℎμν с десятью компонентами. На самом деле, четыре из этих компонент ℎ00, ℎ0𝑖 (при 𝑖 = 1,2,3) являются нединамическими связанными переменными, так что у нас остаётся только шесть динамических компонент ℎ𝑖𝑗 для того, чтобы описать состояния с двумя физическими спиральностями. Из-за того, что есть несоответствие между числом состояний частицы и числом полевых компонентов, следует, что квантовая теория поля и отсюда также и соответствующая классическая теория являются в большой степени теориями со связями.

Для того, чтобы разрешить это несоответствие, необходимо включить в теорию избыточность так, чтобы многие различные классические полевые конфигурации описывали одно и то же физическое состояние. Другими словами, это должна быть калибровочная теория. Для безмассового поля спина 2 может быть показано, что необходимый калибровочный принцип является условием общей ковариантности, что приводит к эйнштейновской теории.

В лекции 3 Фейнман построил квадратичное действие безмассового поля спина 2, которое линейным образом связано с сохраняющимся тензором энергии-импульса. Он объясняет калибровочную инвариантность результирующего линейного полевого уравнения в разделе 3.7 и даёт комментарий в разделе 4.5 о том, что можно сделать вывод о нелинейном самовзаимодействии поля, основываясь на требовании калибровочной инвариантности амплитуд рассеяния. Но Фейнман не доводит эту программу до конца. (Он только замечает, что это довольно трудно было бы сделать.) Вместо этого, он использует довольно отличный от этого подхода метод для того, чтобы получить эйнштейновское нелинейное классическое полевое уравнение, метод, основное внимание в котором сосредоточено на непротиворечивости. Так как линейное полевое уравнение для свободного безмассового поля со спином 2 с необходимостью имеет калибровочную инвариантность (для того, чтобы устранить ненужные состояния спиральности), общие модификации такого полевого уравнения (такие, как модификации, которые возникают тогда, когда поле спина 2 связано с материей) не допускают никаких решений. Новые члены в модифицированном уравнении должны удовлетворять нетривиальному условию непротиворечивости, которое существенным образом является требованием того, что новые члены удовлетворяют калибровочной симметрии. Это условие непротиворечивости оказывается достаточным при указании пути в направлении специфического эйнштейновского множества нелинейных связей и соответствующего нелинейного полевого уравнения.

Более подробно: задача, как она сформулирована в разделе 6.2, состоит в том, чтобы найти функционал действия, 𝐹[ℎ] для поля спина 2 такого, что гравитационное полевое уравнение

δ𝐹

δℎμν

=

𝑇

μν

(П.1)

согласуется с уравнением движения вещества. Здесь 𝑇μν есть тензор энергии-импульса вещества. В лекции 3 Фейнман находит квадратичное выражение для 𝐹, которое удовлетворяет согласованному линейному полевому уравнению до тех пор, пока сохраняется тензор энергии-импульса вещества (для случая специальной теории относительности) 𝑇μν. Беспокойство возникает тогда, когда поле ℎμν взаимодействует с веществом так, что вещество действует как источник ℎμν, уравнение движения вещества модифицируется гравитационными силами и величина 𝑇μν не оказывается более нулевой. Таким образом, полевое уравнение для ℎμν и уравнение движения вещества оказываются несовместными; эти уравнение не допускают одновременных решений. В этом состоит проблема непротиворечивости (линейной теории).

Используя требования того, что полевое уравнение удовлетворяется тензором ℎμν совместно с уравнением движения материи, Фейнман сделал вывод о том, что нелинейные поправки более высокого порядка должны быть добавлены к действию 𝐹. Требование непротиворечивости может быть облачено в форму принципа инвариантности, которому удовлетворяет действие, (с учётом этого принципа действие есть инвариант при общих координатных преобразованиях). После этого фейнмановский анализ стал довольно общепринятым и привёл к заключению о том, что достаточно общее согласованное полевое уравнение, которое включает в себя не более двух производных, есть уравнение Эйнштейна (с космологической постоянной).

Результирующие нелинейные поправки имеют приятную физическую интерпретацию. Без этих поправок гравитация не имеет связи сама с собой. Когда нелинейные поправки включаются в рассмотрение, источник для гравитационного поля (как он рассматривается в плоском пространстве-времени Минковского) есть полный тензор энергии-импульса, включающий вклад, обусловленный собственно гравитационным полем. Другими словами, удовлетворяется (сильный) принцип эквивалентности. Закон сохранения, удовлетворяемый энергией-импульсом вещества, становится эйнштейновским ковариантным законом, 𝑇μν=0, который в сущности допускает обмен энергией и импульсом между веществом и гравитацией.

5
{"b":"614071","o":1}