Спин гравитона и антигравитация
Выгодность теоретико-полевого развития теории гравитации состоит в том, что то, что (находящийся в оболочке) гравитон является безмассовым и имеет спин 2, получается непосредственно без того, чтобы начинать с полностью согласованной, полностью ковариантной теории, т.е. без привлечения Принципа Общей Ковариантности. Это выглядит как построение теории гравитации снизу вверх, вместо того, чтобы строить сверху вниз, используя полный геометрический аппарат. Развитие теории начинается в разделе 2.3 лекций и продолжается в разделах 3.1 - 3.4. Краткое изложение этого аргумента состоит в следующем.
В квантовой теории поля точечных частиц сила между двумя частицами передаётся путём обмена виртуальными (или безоболочечными) частицами. С каждой силой ассоциируется заряд. Заряженные частицы чувствуют силу путём связи или взаимодействия с частицами, которые переносят эту силу. Наиболее привычным примером является электродинамика. Частицы, которые чувствуют силу, переносят электрический заряд. Электромагнитная сила передаётся путём обмена фотонами со спином 1. Сами фотоны незаряжены и, следовательно, напрямую не взаимодействуют друг с другом. Получившиеся в результате полевые уравнения являются линейными. В КХД, теории сильного взаимодействия, построенной из калибровочной теории Янга - Миллса (сильное взаимодействие ответственно за сдерживание вместе нуклонов и, таким образом, за существование атомных ядер), этот заряд называется цветом. Фундаментальные частицы, которые чувствуют сильное взаимодействие, являются цветными кварками, а частицы, которые переносят силу, называются глюонами. Сами глюоны являются частицами с цветовым зарядом, отсюда следует, что в отличие от фотона, они могут напрямую взаимодействовать друг с другом, и результирующие полевые уравнения являются нелинейными. Заряд, связанный с гравитацией, есть масса, которая, как мы полагаем, исходя из специальной теории относительности, должна быть эквивалентна энергии. Так как мы знаем почти всё, что имеет энергию, то гравитация должна взаимодействовать со всем. Частица, которая переносит гравитационную силу, называется гравитоном. Так как гравитон имеет энергию, гравитоны должны непосредственно взаимодействовать друг с другом.
Если теория поля используется для описания гравитации, тогда эта теория должна воспроизводить Закон Всемирного Тяготения Ньютона в соответствующем статическом нерелятивистском пределе, т.е. мы должны вновь получить
𝐹
=-
𝐺𝑚₁𝑚₁
𝑟²
(K.1)
путём обмена гравитоном между частицами 1 и 2, разделёнными расстоянием 𝑟 в соответствующем пределе. Как хорошо известно, гравитационная сила - дальнодействующая (сила пропорциональна 1/𝑟², а потенциал пропорционален 1/𝑟), отсюда следует, что находящийся в оболочке или свободный изолированный гравитон должен быть безмассовым, точно также, как и для случая фотона. Однако, в отличие от случая электромагнетизма, одинаковые заряды в гравитации притягиваются.
Для того, что воспроизвести статическую силу, а не просто рассеяние, излучение или поглощение одиночного гравитона другой частицей должно оставлять обе частицы в одном и том же внутреннем состоянии. Это исключает возможность того, что гравитон переносит полуцелый спин (например, связанный с тем фактом, что он имеет вращение на угол 720° для того, чтобы возвратить себе назад волновую функцию спина 1/2). Следовательно, гравитон должен иметь целый спин. Далее, для того, чтобы решить, какие значения целого спина оказываются возможными, мы разберём два случая, когда частица 2 является идентичной частице 1 и когда частица 2 является античастицей частицы 1, так что будучи заряженными, эти частицы переносят одинаковый и противоположные заряды соответственно. Когда вычисляется потенциал для обоих случаев и взяты соответствующие пределы, мы находим, что когда частица, с помощью которой переносится взаимодействие, переносит целый нечётный спин, похожие заряды отталкиваются и противоположные заряды притягиваются, точно также, как в случае электродинамики. С другой стороны, когда частица, с помощью которой переносится взаимодействие, переносит чётный целый спин, то потенциал определяет универсальным образом притяжение (похожие заряды и противоположные заряды притягиваются). Отсюда следует, что спин гравитона должен быть равным 0, 2, 4,…
Для того, чтобы исключить возможность спина 0, мы замечаем, что эксперимент Этвеша и его недавние усовершенствования эмпирически показывают, что гравитация действительно взаимодействует с содержащейся в объектах энергией, отсюда следует, что на такие объекты, как фотоны, действует гравитация, например, они должны ”падать” в гравитационном поле. Если мы предполагаем, что частица, которая переносит взаимодействие, имеет спин 0, тогда мы теряем взаимодействие гравитации с фотоном со спином 1. Так как мы знаем, что фотон отклоняется массивным объектом, например Солнцем, то гравитон не может иметь спин 0.
На качественном языке теории поля функции Грина для распространения частицы, с помощью которой передаётся взаимодействие от частицы 1 к частицы 2 в импульсном пространстве, есть
Δ
₀
~
1
𝑘²
,
скалярное поле,
Δ
₁
~
ηνμ
𝑘²
,
векторное поле,
Δ
₂
~
ηνμησρ
𝑘²
,
тензорное поле,
(K.2)
где 𝑘² есть квадрат 4-импульса, переносимого виртуальной частицей, осуществляющей перенос взаимодействия, и ηνμ есть метрика плоского пространства Минковского. Скалярное поле представляет спин 0, векторное поле спин 1 и соответствующим образом спроектированное тензорное поле представляет спин 2. Для вычисления амплитуды для обмена мы помещаем пропагаторы Δ между тензорами 𝑇νμ(1) и 𝑇αβ(2) для двух частиц. При обмене частицей со спином 0 пропагатор Δ₀ не содержит никаких множителей ηνμ в числителе для того, чтобы свернуть индексы 𝑇νμ(1) с индексами 𝑇αβ(2), отсюда следует, что мы должны сами свернуть индексы отдельно у этих тензоров энергии-импульса. Таким образом, при обмене частицей со спином 0 амплитуда пропорциональна величине
𝑇
μ
μ
(1)
1
𝑘²
𝑇
α
α
(2)
.
(K.3)
Другими словами, гравитон со спином 0 взаимодействует только со следом тензора энергии-импульса. Тем не менее, тензор энергии-импульса для электромагнитного поля в пространстве Минковского является бесследовым, отсюда следует, что скалярные гравитационные поля не связывают гравитацию со светом, так что гравитон не может быть частицей спина 0.
Так как гравитон не является бесспиновой частицей, то следующей возможностью является спин, равный 2. Классическим путём не найдено ничего такого, что позволило бы нам исключить случай спина, равный 2, так что привлекая правило ”если это работает, не ремонтируй это”, возможностями существования более высоких значений спина пренебрегаем. Тем не менее, несмотря на это мы ещё не совсем закончили (наше рассуждение). Общее тензорное поле содержит части, которые мы всё ещё хотим исключить. Например, антисимметричная часть ведёт себя как взаимодействие полей со спином 1 (напомним, что напряжённости электромагнитного поля 𝐹μν являются антисимметричными) и, следовательно, должна быть отброшена. Таким образом, остаётся симметричное тензорное поле.
В качестве резюме скажем, что гравитон безмассовый, поскольку гравитация является дальнодействующей силой, и он обладает спином 2 для того, чтобы он мог взаимодействовать с содержащейся в веществе энергией путём универсального взаимодействия.