Рис. 26.Различные типы парников (частично по S.Brehme).
К первой группе относятся открыто стоящие теплицы: это различные парники, сделанные из стекла или синтетической пленки, собственно теплицы различной конструкции и пристенные теплицы и парники.
Рис.27. Теплицы (частично по S.Brehme).
Рис.28. Пристенные теплицы и парник (частично по S.Brehme)
. Рис.30. Балконные и заоконная теплицы.
Рис.31. Оконная внутрикомнатная теплица (слева).
Рис.32. Использование аквариуме! колпаков и пакетов из синте-ческой пленки в качестве микротепличек (справа).
К постройке теплицы кактусовод должен отнестись со вниманием. Ее делают удобной в обращении, отвечающей всем параметрам, необходимым для роста растений, и, что немаловажно именно для комнатных теплиц — она должна вписываться в интерьер комнаты.
Материалом для постройки теплиц обычно служит дерево или металл (в качестве каркаса) и стекло, пленка, органическое стекло (как покрытие). Более подробно о комнатной теплице будет рассказано в следующей главе.
Как же создать в комнате или другом помещении благоприятные условия для роста и развития кактусов? Ответ напрашивается сам собой: необходимо отделить место содержания растений от внешней среды, поддерживать температуру, необходимую для роста этих растений. Для этого, прежде всего, следует ограничить теплообмен с наружной средой. Даже под обыкновенным колпаком в летнее время температура воздуха выше окружающей на 10 — 20 градусов.
Уличные теплицы иногда подключают к центральному отоплению или же нагревают воздух калориферами.
Устройство обогрева уличной теплицы
Свет
В растениях постоянно образуются различные органические вещества: белки, жиры, углеводы и другие богатые энергией соединения. В зеленых растениях, как писал в своих работах К.А.Тимирязев, откладывается в запас лучистая энергия. Естественным источником лучистой энергии для растений является Солнце. «Солнечный свет через микроскопические зерна хлорофилла дает начало всем проявлениям жизни на земле», — писал Тимирязев.
О влиянии солнечной энергии на хлорофилл, усвоении и преобразовании ее в химические соединения написаны огромные тома. Процесс поглощения квантов света и превращения углекислого газа в органические соединения — фотосинтез — в настоящее время изучен детально.
Возникает вопрос: стоит ли собирателю растений, особенно таких высокоспециализированных, как кактусы, «влезать в дебри» сложного физиологического процесса фотосинтеза? Конечно же, детально рассмотреть все реакции в рамках этой главы невозможно, да и не имеет смысла, поэтому любознательному читателю придется обратиться к специальной литературе. Однако и обойти вниманием фотосинтез нельзя, т.к. этот процесс лежит в основе жизнедеятельности зеленой клетки.
Фотосинтез
Влияние света на зеленые растения изучалось довольно продолжительное время. Впервые синтез органических веществ благодаря солнечной энергии был назван фотосинтезом в 1877 году. Приведем определение: «фотосинтез — это процесс поглощения электромагнитной энергии солнца хлорофиллом и вспомогательными пигментами и превращения ее в химическую энергию, поглощениеуглекислого газа из атмосферы, синтез органических соединений и выделение кислорода в атмосферу».
Таким образом, для успешного протекания фотосинтеза требуется свет, углекислый газ, вода и специальный пигмент — хлорофилл.
Разъясним несколько терминов, которые будут встречаться в тексте:
радикал — часть молекулы химического вещества. Молекулы большинства веществ врастворах распадаются как минимум на две части. Радикал может иметь положительный или отрицательный заряд и быть свободным либо химически связанным с другим радикалом;
окислитель — атом химического элемента, способный притягивать один или несколько электронов. Так как электрон всегда заряжен отрицательно, то, притягивая в ходе химической реакции один или несколько электронов, окислитель приобретает отрицательный заряд. Типичныйокислитель — кислород. Роль окислителя может играть и часть сложного химического соединения— радикал, например, кислотный остаток;
восстановитель — в противоположность окислителю, способен отдавать один или несколько электронов и в результате приобретать положительный заряд. Типичный восстановитель водород;
степень окисления или восстановления различна у разных элементов и нередко в различных химических реакциях атом одного и того же элемента может приобретать или отдавать один или несколько электронов. В случае потери электрона атом или радикал называется донором, а в случае приобретения — акцептором. По принципу донорно-акцепторной связи образуются молекулы большинства веществ.
Элементарное уравнение фотосинтеза может выглядеть так:
Как видно, углекислый газ восстанавливается до простых сахаров, которые должны были бы тут же окисляться свободным кислородом и превращаться опять в углекислый газ. Однако продукты фотосинтетических реакций разделены благодаря уникальному строению специальных клеточных образований — хлоропластов.
Хлоропласты представляют собой овальные тельца, обычно свободно расположенные в цитоплазме клетки. По строению хлоропласты представляют собой мешок, образованный двумя двойными мембранами, пронизанными порами. Внутренняя полость заполнена студенистым веществом — стромой, в которой расположены уплощенные и округлые мешочки — тилакоиды, сложенные наподобие столбиков монет в граны. Обычно в полностью развитом хлоропласте находится 100 — 150 гран, состоящих из 10 — 30 тилакоидов. Если учитывать, что пигменты сосредоточены в мембранах тилакоидов, то суммарная фотосинтетическая поверхность во много раз превышает поверхность клеточной мембраны.
Хлоропласты имеют зеленую окраску благодаря зеленому хлорофиллу. Кроме них, в клетках находятся еще два вида пластид: желтые и оранжевые — хромопласты и бесцветные—лейкопласты.
В процессе фотосинтеза происходит поглощение света пигментами хлоропластов. Большая часть солнечной энергии поглощается хлорофиллами и каротиноидами. Наиболее важные из них: хлорофилл а имеет сине-зеленую окраску; хлорофилл Ь, имеющий светло-зеленый цвет; оранжевый каротин и желтый ксантофилл (последние два относятся к группе каротиноидов).
Рис. 34. Модель хлоропласта
(по А.М.Силаевой)
1 — оболочка из двух двойных мембран;
2 — строма; 3 — граны и тилакоиды;
4 — поры.
Рис. 35. Модель гран с соедини-тельной системой (по Weier и др.)
Рис. 36. Хлорофилл
а.