Молекулярная диагностика
По мере закрепления ГИС-подхода к раку естественно применять его к любым медицинским диагнозам. Возьмем, например, диабет 2-го типа, на самом деле это название служит общим термином для разнообразных проблем, связанных с сахаром в крови: устойчивость к инсулину, дефектный ионный канал, аномальный адренергический рецептор, аномальная чувствительность к глюкозе и т. д. Дело не только в механизме(-ах), свою роль может сыграть и наследственность. Недавно было обнаружено, что обычные варианты последовательности в гене-переносчике растворенных веществ (SLC16A11) и редкий вариант в другом гене (HNF1A) увеличивают риск диабета у мексиканцев и латиноамериканцев39, 40, а обычный вариант гена (TBC1D4) у гренландцев мешает проникновению сахара в мышцы и увеличивает риск диабета в 10 раз41. Тем не менее при клиническом наблюдении человека с диагнозом «диабет» мы ничего не делаем для того, чтобы понять причину его возникновения, и пытаемся лечить его наугад. Существует 14 различных классов лекарственных препаратов для лечения диабета, поэтому гораздо более разумный ГИС-подход мог бы стать весьма информативным для эффективного лечения. Вероятно, существует по крайней мере столько же молекулярных подвидов диабета, сколько классов лекарственных препаратов – для лечения этого заболевания. Кроме геномной характеристики использование датчика для постоянного измерения количества сахара в крови даже в течение ограниченного периода времени, от нескольких дней до недель, даст детализированные данные о регулировании сахара в крови у отдельного человека. Проведен ряд исключительных исследований, основанных на омиках, которые подразделяют обычные болезни на отдельные молекулярные подвиды; список постоянно растет и включает астму, рассеянный склероз, ревматоидный артрит, рак кишечника и рак шейки матки. Трудно вообразить какой-либо обычный медицинский диагноз, который сегодня не слишком упрощен и не является редукционистским обобщенным термином, неприемлемым в эру медицины, который готов для ГИС.
Фармакогеномика
Как мы упрощаем диагнозы, точно так же мы недооцениваем важность персонального генома или то, как он модулирует реакцию на лекарственное лечение. В настоящее время существует немногим более 100 лекарственных препаратов, взаимодействие которых с ДНК признано проверенным и значимым Управлением по контролю за продуктами и лекарствами США42. Вероятно, этот список будет расти; фактически от всех из более чем 6000 рецептурных лекарственных препаратов будет ожидаться реакция, зависящая от ДНК человека. Действительно, все аспекты ответной реакции каждого человека – всасывание, метаболизм, связывание, перенос, выделение – заданы генетически. У нас нет этих данных по 98 % препаратов, но еще хуже то, что при наличии фармакогеномной информации примерно по 100 препаратам мы не используем ее в медицинской практике.
Многие из фармакогеномных взаимодействий ярко выражены, некоторые из них я привожу в табл. 5.142. Отношение шансов[24] относится к степени эффективности. Таким образом, при лечении литием биполярного расстройства (маниакально-депрессивного психоза) вариант ДНК ассоциируется со 120-кратным увеличением в достижении терапевтического эффекта (исследование проводилось среди ханьцев)43. При лечении гепатита C с помощью интерферона-α наблюдается 38-кратное увеличение эффективности при привязке к варианту гена42. Три других примера относятся к важным побочным эффектам, где вариант последовательности имеет очень большое влияние на риск развития серьезного осложнения.

В то время как это очень серьезные последствия, ни одно из них пока не учитывается в клинической практике, по крайней мере в США. На Тайване и в Сингапуре новый рецепт на карбамазепин нельзя выписать, пока не определен риск развития у пациента синдрома Стивенса – Джонсона, потенциально смертельного побочного эффекта. К сожалению, мы имеем наследие из более чем 6000 лекарственных препаратов, которые были выведены на рынок до того, как появились технология или желание определять взаимодействие между ДНК и лекарственными препаратами. Еще больше беспокоит то, что при имеющихся на сегодняшний день возможностях пока очень мало примеров разработки лекарственных препаратов и систематической работы по раскрытию их фармакогеномного действия какой-либо фармацевтической или биотехнологической компанией. В идеале в будущем ГИС человека будет включать исчерпывающую характеристику ожидаемых взаимодействий его организма с лекарственными препаратами.
Период сохранного здоровья
Эталонный геном человека, который рассматривается как золотой стандарт для геномной вариации, имеет один важный недостаток – люди, которых брали для его создания, были молоды и не имели никакого фенотипа. Таким образом, кажущийся нам надежным «якорь», возможно, изъеден ржавчиной. Например, сильная предрасположенность к образованию тромбов приписывается варианту гена, известному как фактор V Лейдена. Но если вы найдете фактор V Лейдена в эталонном геноме, то это фактор V Лейдена! Нам нужен эталонный геном со строгими фенотипичными характеристиками, чтобы избежать этой проблемы. Необходимо собрать большое количество людей с исключительно долгим периодом сохранного здоровья (как в проекте Wellderly, которым мы в Институте трансляционных исследований Скриппса занимаемся на протяжении последних восьми лет) и провести полногеномное секвенирование, тогда мы сможем быть уверены в здоровом эталонном геноме для сравнения.
Но есть еще одна веская причина, объясняющая, почему геномика периода сохранного здоровья будет крайне важна для человеческой ГИС. Мы мало знаем о генах-модификаторах и защитных аллелях – вариантах признака, соответственно отменяющих риск или обеспечивающих фактическую защиту от болезни. Заслуживающим внимания примером является ген АРР (Amyloid Precursor Protein– предшественник бета-амилоида). Один из редких вариантов этого гена ведет к ранней болезни Альцгеймера, но другой, похоже, полностью защищает от развития болезни Альцгеймера вообще – даже у очень пожилых людей, имеющих две копии ароε4. К сожалению, этот защитный аллель АРР встречается весьма редко (менее чем у 0,3 % людей, имеющих европейских предков), но он может служить бесценным уроком от матери-природы, чтобы мы могли разработать лекарственный препарат для профилактики болезни Альцгеймера в будущем. Точно так же редкие варианты липидного гена под названием АроС3 заметно снижают триглицериды в крови и дают 40 %-ное снижение случаев стенокардии44. Более того, бесспорно, имеется большое количество редких вариантов ДНК, которые точно так же снижают риск или дают защиту от болезни, – нам просто нужно их найти! И в конце концов избавиться от того, что можно охарактеризовать как «игноро́м»!45
Молекулярные аутопсии
Каждый день в США от болезней сердца внезапно умирают свыше 100 000 человек. Только 10 % из этих людей удается реанимировать46. Физические аутопсии для определения причин смерти проводятся редко, а даже когда проводятся, многие молекулярные диагнозы просто упускаются, такие как генетические дефекты ионного канала, например синдром удлиненного интервала QТ или синдром Бругада. Не зная причины внезапной смерти члена семьи, его близкие лишены информации о собственных рисках. Родители ребенка, умершего от СВДС (синдрома внезапной детской смерти), часто очень страдают и остаются в неведении о причинах случившегося. Молекулярная аутопсия, состоящая из полногеномного секвенирования покойного, наряду с секвенированием некоторых здравствующих членов семьи может оказаться особенно информативной. Ниже мы поговорим о необходимости и возможности создания подобного глобального информационного ресурса для молекулярных аутопсий.