Литмир - Электронная Библиотека
Содержание  
A
A

Бор провел вычисления устойчивости электронных орбит и пришел к выводу, что у электрона во внешнем слое есть несколько дозволенных, т. е. стабильных, состояний. Во всех остальных положениях электрон утрачивает стабильность, и атом начинает терять энергию в виде излучения. Вот почему генерируют когерентный луч лазеры и тускло светят лесные гнилушки: электроны в возбужденных атомах перескакивают на недозволенные орбиты и становятся нестабильными. Состояния электрона любопытны тем, что он переходит из одного в другое скачкообразно.

Энергия электронной оболочки квантуется, т. е. делится на порции. Так происходит с энергией в любых физических процессах, но человек не замечает квантования, потому что порции энергии бесконечно малы. Нам кажется, что она расходуется плавно. Перемещения электрона из дозволенного состояния в недозволенное и наоборот не могут сопровождаться плавным изменением энергии. Ведь частица столь мала, что и энергия ее импульса ничтожна. Отсюда невероятные скачки электрона и квантование его орбит и состояний.

Открытия и изобретения, о которых должен знать современный человек - i_103.jpg

Разным орбитам соответствуют разные состояния и разные значения энергии электрона. От состояния электронов во внешнем электронном слое зависит способность атома вступать в химическую связь. Когда квантовую модель атома Бора объединили с представлениями о волновой природе электрона, то получилось, что никаких электронных орбит не существует. Положение электрона в заданный момент времени определить невозможно, т. к. он перемещается скачкообразно, без ускорения. В результате частица распределяется по всей своей орбите.

Орбита уже сама на себя непохожа. Поэтому было решено назвать ее электронной орбиталью — местом, где отрицательная частица пребывает с наибольшей вероятностью. Еще орбиталь именуют электронным облаком, поскольку распределенный вокруг атомного ядра, вечно пребывающий в суетном движении электрон действительно напоминает небольшое косматое облачко. Поскольку электрон обладает волновыми свойствами, то можно сказать, что вдоль всей орбитали устанавливается стоячая волна.

В 1974 г. американскими физиками Ритцем и Бартелом были с применением метода голографии впервые получены увеличенные в 500 млн раз микрофотографии атомов. Атомы принадлежали инертным газам неону и аргону. На фотографиях отчетливо выделяются размытые электронные облачки. Так ученые смогли воочию увидеть орбитали.

Открытия и изобретения, о которых должен знать современный человек - i_104.jpg

Изобретение устройств с рентгеновскими лучами

Однажды у писателя К. Мая, известного своими романами об индейцах, спросили его мнение касательно нашумевшего открытия В. К. Рентгена. Писатель ответил, что открытие является подлинной сенсацией, однако, как и любая сенсация, оно вскоре предастся забвению. Любопытно, что профессор Вюрцбургского университета, немецкий физик Рентген очень любил читать «ковбойские истории» К. Мая. Представлять особо великого физика не нужно, поскольку он известен всему миру как первооткрыватель рентгеновских лучей.

Рентген был выдающимся физиком-экспериментатором, причем, скорее всего, именно умение блестяще ставить опыты и добиваться однозначных результатов привело ученого к замечательному открытию. Рентген, как и Дж. Дж. Томсон, изучал электрические разряды в газах и наблюдал за катодными лучами. Собственно говоря, глубокий интерес Томсона и прочих физиков был вызван как раз открытием Рентгена. До него ученые в течение нескольких лет наблюдали катодные лучи, но так и не пришли к каким-либо серьезным выводам.

В конце XIX в. Рентген ставил опыты с классической газоразрядной трубкой, снабженной двумя электродами — положительным (анодом) и отрицательным (катодом). Из трубки был выкачан почти весь воздух, в ней создавалось давление примерно 10 Па. В то время уже было известно, что катод испускает какие-то особые лучи. Томсон впоследствии доказал, что катодные лучи представляют собой поток электронов, срывающихся с катода. В опытах Рентгена электроны падали не на люминофорный экран, а на анод, вызывая на нем желто-зеленое свечение. В ноябре 1895 г. физик обнаружил, что трубка странным образом воздействует на соли бария.

Завернутая в черную, светонепроницаемую бумагу, она заставляла барий светиться. Едва Рентген отключал трубку, как свечение солей пропадало. Тогда физик изготовил экран, покрытый солями бария, и стал наблюдать, как засвечивает этот экран трубка. Рентген предположил, что она испускает неизвестный науке род невидимых лучей. Ученый помещал на их пути различные предметы, чтобы по изменению светимости экрана сделать вывод об общих свойствах невидимого излучения. Оказалось, что X-лучи (икс-лучи), как назвал их экспериментатор, обладают высокой проницаемостью. Они задерживаются металлами, но свободно проходят сквозь бумагу, эбонитовую пластинку и многие другие материалы.

Ради любопытства физик поместил на пути X-лучей собственную руку. Мягкие ткани оказались прозрачны для невидимого излучения, тогда как костная ткань была слишком плотной и не пропускала его. В результате кости дали тень на экран, и физик увидел четкое изображение скелета собственной кисти. Своему открытию Рентген посвятил статью «О новом роде лучей», опубликованную на всех европейских языках и знакомую ученым всего мира. К физику пришла слава. Обнаруженное им излучение назвали в его честь, он стал первым ученым, удостоенным Нобелевской премии. Однако физик боялся этой славы и до конца жизни отказывался называть X-лучи рентгеновскими.

Рентген не смог объяснить природу лучей, поскольку не знал о существовании электронов. Хуже того, ученый настойчиво отрицал сам факт их существования, когда элементарные частицы были обнаружены Томсоном спустя год после открытия Рентгена. Известно, что физик строжайше запретил помощникам и ученикам произносить само слово «электрон» в своей лаборатории. Как бы то ни было, лучи эти возникают из-за резкого торможения электронов на аноде разрядной трубки. Человек не способен видеть излучение потому, что оно имеет слишком короткую длину волны.

X-лучи позволили физикам открыть и изобрести немало интересного. В первую очередь следует упомянуть рентгеноструктурный анализ. Рентгеновское излучение обладает основными свойствами светового, а потому способно испытывать дифракцию, т. е. огибать небольшие препятствия и создавать при этом сложный теневой рисунок. Но поскольку оно коротковолновое, то, следовательно, подходящие для него препятствия являются микроскопическими, имеющими размеры молекул. Таким образом, при помощи рентгеновских лучей можно просвечивать молекулярную структуру вещества, проводя точнейший анализ, называемый рентгеноструктурным.

Другое достижение, которым физика обязана открытию Рентгена, — рождение новой науки — рентгеновской астрономии. В космосе находится множество источников этого невидимого излучения, о природе которых астрофизики могут судить благодаря специальной технике, оснащенной детекторами X-лучей. Наиболее впечатляющим открытием рентгеновской астрономии стало обнаружение звезд класса нейтронных пульсаров, периодически испускающих в пространство X-лучи. Природа этих объектов до конца не изучена, астрофизики не могут с полной уверенностью сказать, что именно заставляет эти светила вести себя столь необычным образом. Однако у ученых появилась рабочая гипотеза.

Пульсар, вещество которого давно подверглось нейтронизации, является частью двойной системы, куда входит нормальная плазменная звезда. Нейтронизация вещества означает, что все электроны пульсара под действием его же собственной гравитации были вжаты в протоны, которые в результате утратили заряд и превратились в нейтроны.

Почти все сверхплотное вещество такой звезды состоит из сильно сжатых нейтронов. Пульсары обладают большой массой и перетягивают на себя часть плазмы от своей соседки — нормального светила. Поэтому на поверхность нейтронной звезды, как на гигантский анод, обрушивается поток электронов, испускающих рентгеновские лучи, которые регистрируются астрономическими приборами.

48
{"b":"568091","o":1}