Первое место по запасам и добыче меди (свыше 60 % разведанных запасов и 40 % мировой добычи без социалистических стран) занимают прожилково-вкрапленные руды. Они широко распространены во многих странах: в СССР (Коунрад, Алмалык, Каджаран), Болгарии, Венгрии, Чили (Чукикамата и др.), США (Бингем и др.), Канаде (Валли-Коппер) и других. Вторым крупным источником для получения меди являются медистые песчаники и сланцы, заключающие в себе около 30 % мировых разведанных запасов и 20 % мировой добычи металла (без социалистических стран). Крупнейшие месторождения этого типа расположены в СССР (Джезказган, Удокан), в Замбии и Заире (см. Меденосный пояс Центральной Африки). Важную роль играют медноколчеданные руды (свыше 5 % разведанных запасов меди мира без социалистич. стран). Такие месторождения имеются в СССР (Урал), в Испании (Рио-Тинто), в Югославии (Бор), Турции (Эргани-Маден) и других странах. Медно-никелевые месторождения (10 % разведанных запасов меди без социалистических стран) разрабатываются главным образом для получения никеля (в СССР — Норильская и Кольская группы месторождений; за рубежом: в Канаде — Садбери, в США — Аляска, Стиллуотер). Медьсодержащие полиметаллические (свинцово-цинково-медные) руды широко распространены во всём мире. Скарновые медные руды, генетически связанные с умеренно кислыми гранитоидами, жильные и другие типы месторождений в общем балансе запасов и мировой добычи меди имеют второстепенное значение. Основными производителями меди в капиталистическом мире являются (на начало 1973; производство меди в концентрате, в тысячах т ): США (1490), Замбия (717), Чили (716), Канада(708) и Заир (428), общая доля которых в мировом производстве этого металла (без социалистических стран) составляет более 81 %. См. также Медь . Лит.: Смирнов В. И., Геология полезных ископаемых, 2 изд., М., 1969; Инструкция по применению классификации запасов к месторождениям медных руд, М., 1961; Минеральные ресурсы промышленно развитых капиталистических и развивающихся стран, М., 1973. А. С. Богатырёв. Медные сплавы Ме'дные спла'вы , сплавы на основе меди. М. с. — первые металлические сплавы, созданные человеком (см. Бронзовый век ). Примерно до сер. 20 в. по мировому производству М. с. занимали 1-е место среди сплавов цветных металлов, уступив его затем алюминиевым сплавам. Со многими элементами медь образует широкие области твёрдых растворов замещения, в которых атомы добавки занимают места атомов меди в гранецентрированной кубической решётке. Медь в твёрдом состоянии растворяет до 39 % Zn, 15,8 % Sn, 9,4 % Al, a Ni — неограниченно. При образовании твёрдого раствора на основе меди растут её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, может значительно повыситься коррозионная стойкость, а пластичность сохраняется на достаточно высоком уровне. При добавлении легирующего элемента свыше предела растворимости образуются соединения, в частности электронные, т. е. характеризующиеся определённой электронной концентрацией (отношением суммарного числа валентных электронов к числу атомов, которое может быть равно 3 /2 , 21 /13 или 7 /4 ). Этим соединениям условно приписывают формулы CuZn, Cu5 Sn, Cu31 Sn8 , Cu9 Al4 , CuBe и другие. В многокомпонентных М. с. часто присутствуют сложные металлические соединения неустановленного состава, которые значительно твёрже, чем раствор на основе меди, но весьма хрупки (обычно в двухфазных и многофазных М. с. доля их в структуре намного меньше, чем твёрдого раствора на основе меди). М. с. получают сплавлением меди с легирующими элементами или с промежуточными сплавами — лигатурами, содержащими легирующие элементы. Для раскисления (восстановления окислов) широко применяют введение в расплав малых добавок фосфора (десятые доли %). М. с. подразделяют на деформируемые и литейные. Из деформируемых М. с. отливают (в изложницы или непрерывным методом) круглые и плоские слитки, которые подвергают горячей и холодной обработке давлением: прокатке, прессованию через матрицу или волочению для производства листов, лент, прутков, профилей, труб и проволоки. М. с. хорошо обрабатываются давлением, и деформированные полуфабрикаты составляют основную долю всего объёма их производства. Литейные М. с. обладают хорошими литейными свойствами, из них отливкой в земляные и металлические формы получают фасонные детали, а также декоративно-прикладные изделия и скульптуру (см. Бронза в искусстве).
Механические свойства М. с. изменяются в широких пределах при холодной обработке давлением и при отжиге. Холодной деформацией можно увеличить твёрдость и предел прочности М. с. в 1,5—3 раза при одновременном снижении пластичности (см. Наклёп ), а последующий рекристаллизационный отжиг позволяет частично или полностью (в зависимости от температуры и его продолжительности) восстановить исходные (до деформации) свойства (см. Термическая обработка ). Смягчающий отжиг М. с. после холодной обработки давлением проводят при 600—700 °С. Большинство М. с. не подвергают упрочняющей термической обработке (закалке и старению), так как эта обработка или в принципе невозможна, если сплав при всех температурах однофазен, или величина упрочнения очень мала. Для создания термически упрочняемых М. с. используют такие легирующие элементы, которые образуют с медью или между собой интерметаллические соединения (например, CuBe, NiBe, Ni3 Al), растворимость которых в твёрдом растворе на базе меди с понижением температуры уменьшается. При закалке таких сплавов образуется пересыщенный твёрдый раствор, из которого при искусственном старении выделяются дисперсные интерметаллические соединения, упрочняющие М. с. М. с. подразделяют на латуни , бронзы и медно-никелевые сплавы . В латунях главной добавкой является цинк, в бронзах — любой элемент, кроме цинка и никеля. Промышленные марки выпускаемых в СССР М. с. начинаются с первых букв их названий — Л (латуни), Бр. (бронзы) и М (медно-никелевые сплавы). Легирующие элементы обозначают следующими буквами: А — алюминий, Н — никель, О — олово, Ц — цинк, С — свинец, Ж — железо, Мц — марганец, К — кремний, Ф — фосфор, Т — титан. В марке простой (двойной) латуни цифры указывают ср. содержание меди. Например, латунь Л90 содержит 90 % Cu и 10 % Zn. В марке многокомпонентной латуни первые цифры указывают среднее содержание меди, а последующие — легирующих элементов. Например, латунь ЛАН59-3-2 содержит 59 % Cu, 3 % Al и 2 % Ni (остальное цинк). В марках бронз и медно-никелевых сплавов буквы и соответствующие им цифры указывают содержание легирующих элементов. Например, бронза Бр. АЖМц10-3-1,5 содержит 10 % Al, 3 % Fe и 1,5 % Mn. Буква Л в конце марки М. с. обозначает, что он предназначен для фасонного литья (например, ЛК80-3Л). Состав, типичные механические свойства и примерное назначение М. с. приведены в таблицах 1—3. Все М. с. отличаются хорошей стойкостью против атмосферной коррозии. Кислород при комнатной температуре не действует на М. с.; окись углерода с ними не реагирует. Незагрязнённый пар, сухой или влажный действует на бронзы очень слабо. Сероводород уже при незначительной влажности и особенно при повышенных температурах сильно реагирует с М. с. Азотная и соляная кислоты действуют на латуни и оловянные бронзы очень сильно, серная — значительно слабее. Таблица 1. — Состав, типичные механические свойства* и назначение латуней (1 Мн/м2 » 0,1 кгс/мм2 ) Марка сплава | Состав | Предел прочности sb , Мн/м2 | Относительное удлинение d, % | Твердость HB , Мн/м2 | Примерное назначение | Л96 | 95—97% Cu, остальное Zn | 240 | 50 | 470 | Радиаторные трубки | Л90 | 88—91% Cu, остальное Zn | 260 | 45 | 530 | Листы и ленты для плакировки | Л80 | 79—81% Cu, остальное Zn | 320 | 52 | 540 | Проволочные сетки и целлюлозно-бумажной промышленности, сильфоны | Л68 | 67—70% Cu, остальное Zn | 320 | 55 | 550 | Изделия, получае- мые холодной штамповкой и глубокой вытяжкой | Л63 | 62—65% Cu, остальное Zn | 330 | 49 | 560 | Полосы, листы, лента, проволока, трубы, прутки | ЛА77-2 | 76—79% Cu, 1,75—2,5% Al, остальное Zn | 400 | 55 | 600 | Конденсаторные трубы | ЛАЖ60-1-1 | 58—61% Cu, 0,75—1,5% Al, 0,75—1,5% Fe, 0,1—0,6% Mn, остальное Zn | 450 | 45 | 950 | Трубы и прутки | ЛАЖМц66-6-3-2 | 64—68% Cu, 6—7% Al, 2—4% Fe, 1,5—2,5% Mn, остальное Zn | 650 | 7 | 1600 | Литые массивные червячные винты, гайки нажимных винтов | ЛАН59-3-2 | 57—60% Cu, 2,5—3,5% Al, 2—3% Ni, остальное Zn | 380 | 50 | 750 | Трубы и прутки | ЛЖМц59-1-1 | 57—60% Cu, 0,6—1,2% Fe, 0,5—0,8% Mn, 0,1—0,4% Al, 0,3—0,7% Sn, остальное Zn | 450 | 50 | 880 | Полосы, проволока, прутки и трубы | ЛН65-5 | 64—67% Cu, 5—6,5% Ni, остальное Zn | 400 | 65 | 700 | Манометрические трубки, конденсаторные трубы | ЛО70-1 | 69—71% Cu, 1—1,5% Sn, остальное Zn | 350 | 60 | 590 | Конденсаторные трубы, теплотехническая аппаратура | ЛС74-3 | 72—75% Cu, 2,4—3% Pb, остальное Zn | 350 | 50 | 570 | Детали часов, автомобилей | ЛК80-3Л | 79—81% Cu, 2,5—4,5% Si, остальное Zn | 300 | 20 | 1050 | Арматура, подвергающаяся действию воды, детали судов | ЛКС80-3-3 | 79—80% Cu, 2,5—4,5% Si, 2—4% Pb, остальное Zn | 350 | 20 | 950 | Литые подшипники и втулки |
|