Литмир - Электронная Библиотека
Содержание  
A
A

  Использование решений, основанных на уравнениях сплошной линейно-деформируемой среды и применяемых к грунтам лишь при определённых условиях, позволяет рассматривать многие задачи М. г., где напряжённое состояние не является предельным. В ряде случаев по теории линейно-деформируемой среды устанавливается лишь напряжённое состояние, а переход к деформациям осуществляется при помощи экспериментально определяемых зависимостей.

  При рассмотрении задач о деформировании грунтов во времени (по теории фильтрационной консолидации или ползучести) применяется распределение напряжений, полученное на основе решения задачи для сплошной линейно-деформируемой среды.

  Теория предельного равновесия сыпучих сред используется в М. г. для рассмотрения задач, связанных с определением критических нагрузок на основания, предельного равновесия грунтового откоса заданного профиля, очертания максимально устойчивых откосов без пригрузки или с заданной пригрузкой сверху, активного и пассивного давлений грунтов на наклонные подпорные стенки, устойчивости грунтовых сводов и др.

  Некоторые виды грунтов, являясь структурно неустойчивыми (оттаивающие вечномёрзлые, лёссовые просадочные при замачивании, слабые структурные), обладают особенностями деформирования, связанными с резкими изменениями их физического состояния и структуры. В современных М. г. разработаны специальные методы расчёта осадок вечномёрзлых грунтов при их оттаивании, просадок лёссов при замачивании, устанавливаются предельные скорости загружения слабых глинистых и заторфованных грунтов из условия сохранения их структурной прочности и т. д. На основе научных достижений в области М. г. в СССР создан наиболее прогрессивный метод проектирования оснований и фундаментов по предельным деформациям. Важной задачей современной М. г. является дальнейшее совершенствование методов определения физико-механических свойств грунтов в лабораторных и полевых условиях, комплексного исследования совместной работы фундаментов сооружений и грунтов оснований, расчёта свайных фундаментов.

  Первой фундаментальной работой по М. г. является исследование французского учёного Ш. Кулона (1773) по теории сыпучих тел, ряд результатов которого успешно применяется и в настоящее время при расчёте давления грунтов на подпорные стенки. Французским учёным Ж. Буссинеском было получено решение задачи (1885) о распределении напряжений в упругом полупространстве под сосредоточенной силой, послужившее основой для определения напряжений в линейно-деформируемых основаниях. Важным этапом в развитии М. г. явились исследования американского учёного К. Терцаги. Большой вклад в М. г. сделан русскими (В. И. Курдюмов, П. А. Миняев) и особенно советскими учёными. Последними разработана новейшая теория предельного равновесия грунтов (В. В. Соколовский, В. Г. Березанцев, С. С. Голушкевич, М. В. Малышев и др.), сформулированы и решены задачи теории консолидации двух- и трёхфазных грунтов (Н. М. Герсеванов и Д. Е. Польшин, В. А. Флорин, Н. А. Цытович, Н. Н. Маслов, Ю. К. Зарецкий и др.)., на базе теории балок на упругом основании исследованы вопросы совместной работы сооружений и их оснований (А. Н. Крылов, М. И. Горбунов-Посадов, В. А. Флорин, Б. Н. Жемочкин, А. П. Синицын, И. А. Симвулиди и др.). Важная роль принадлежит советским учёным в разработке ряда вопросов механики отдельных региональных видов грунтов — структурно-неустойчивых просадочных (Ю. М. Абелев, Н. Я. Денисов, Р. А. Токарь), многолетнемёрзлых (Н. А. Цытович, С. С. Вялов, М. Н. Гольдштейн и др.). Среди исследований по вопросам устойчивости откосов наиболее известны работы В. В. Соколовского, Н. Н. Маслова, М. Н. Гольдштейна, подпорных стенок — И. П. Прокофьева, Г. К. Клейна. Из зарубежных учёных в области М. г. наиболее известны своими работами: Ж. Керизель (Франция), И. Бринч-Хансен (Дания), Р. Гибсон, А. Бишоп (Великобритания), М. Био, У. Лэмб (США).

  Научно-исследовательские работы по М. г. ведутся в ряде научных учреждений и вузов СССР, преимущественно в Научно-исследовательском институте оснований и подземных сооружений им. Н. М. Герсеванова, Московском инженерно-строительном институте им. В. В. Куйбышева и др. строительных вузах.

  В 1936 по инициативе К. Терцаги было создано Международное общество по механике грунтов и фундаментостроению (ISSMFE), членом которого (с 1957) является СССР. 8-й конгресс этого общества состоялся в Москве в 1973. Орган общества — журнал «Géotechnique» (L., c 1948). В СССР с 1959 издаётся журнал «Основания, фундаменты и механика грунтов». Периодические издания выпускаются также в США, Франции, Италии и др. странах.

  Лит.: Прокофьев И. П., Давление сыпучего тела и расчёт подпорных стенок, 5 изд., М., 1947; Герсеванов Н. М., Польшин Д. Е., Теоретические основы механики грунтов и их практические применения, М., 1948; Флорин В. А., Основы механики грунтов, т. 1—2, Л. — М., 1959—1961; Соколовский В. В., Статика сыпучей среды, 3 изд., М., 1960; Терцаги К., Теория механики грунтов, пер. с нем., М., 1961; Цытович Н. А., Механика грунтов, 4 изд., М., 1963; его же, Механика грунтов. Краткий курс, 2 изд., М., 1973; Клейн Г. К., Расчёт подпорных стен, М., 1964; Гольдштейн М. Н., Механические свойства грунтов, 2 изд., [т. 1—2], М., 1971—73.

  Н. А. Цытович, М. В. Малышев.

Механика развития

Меха'ника разви'тия, раздел биологии, изучающий причинные механизмы индивидуального развития организмов. Основанная в 80-х гг. 19 в. немецким учёным В. Ру М. р. бурно развивалась в 1-й трети 20 в. Начиная с 40-х гг. в результате сближения М. р., цитологии, генетики, эмбриологии, экспериментальной морфологии, биохимии и молекулярной биологии возникла синтетическая область исследования — биология развития .

Механика сплошной среды

Меха'ника сплошно'й среды', раздел механики, посвященный изучению движения и равновесия газов, жидкостей и деформируемых твёрдых тел. К М. с. с. относятся: гидроаэромеханика , газовая динамика , упругости теория , пластичности теория и др. Основное допущение М. с. с. состоит в том, что вещество можно рассматривать как непрерывную, сплошную среду, пренебрегая его молекулярным (атомным) строением, и одновременно считать непрерывным распределение в среде всех её характеристик (плотности, напряжений, скоростей частиц и др.). Это оправдывается тем, что размеры молекул ничтожно малы по сравнению с размерами частиц, которые рассматриваются при теоретических и экспериментальных исследованиях в М. с. с. Поэтому можно применить в М. с. с. хорошо разработанный для непрерывных функций аппарат высшей математики.

  Исходными в М. с. с. при изучении любой среды являются: 1) уравнения движения или равновесия среды, получаемые как следствие основных законов механики, 2) уравнение неразрывности (сплошности) среды, являющееся следствием закона сохранения массы, 3) уравнение энергии. Особенности каждой конкретной среды учитываются т. н. уравнением состояния или реологическим уравнением (см. Реология ), устанавливающим для данной среды вид зависимости между напряжениями или скоростями изменения напряжений и деформациями или скоростями деформаций частиц. Характеристики среды могут также зависеть от температуры и др. физико-химических параметров; вид таких зависимостей должен устанавливаться дополнительно. Кроме того, при решении каждой конкретной задачи должны задаваться начальные и граничные условия, вид которых тоже зависит от особенностей среды.

  М. с. с. находит огромное число важных приложений в различных областях физики и техники.

  Лит.: Ландау Л. Д. и Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954 (Теоретическая физика); Седов Л. И., Механика сплошной среды, т. 1—2, М., 1973.

  С. М. Тарг.

Механика сыпучих сред

Меха'ника сыпу'чих сред, раздел механики сплошной среды , в котором исследуются равновесие и движение сыпучих сред (песчаных, глинистых и др. грунтов, зерна и т. д,). Задача М. с. с. — главным образом определение давления грунтов на опорные стенки, формы возможных поверхностей сползания откосов, вычисление необходимой глубины фундаментов, определение давления зерна на стены элеваторов, изучение волновых процессов в грунтах при динамических нагружениях и т. д. Одним из основных разделов М. с. с. является механика грунтов .

302
{"b":"106146","o":1}