Наиболее полно изучено рассеяние света на сферических частицах. Оптические свойства этих частиц зависят как от показателя преломления, так и от отношения радиуса частицы к длине волны излучения.
Применение указанной теории к изучению пылевых туманностей не приводит, однако, к вполне определённым результатам, так как при этом приходится делать различные предположения. Обычно заранее задаётся форма частиц и показатель преломления, и путём сравнения оптических свойств, полученных теоретически и из наблюдений, находятся размеры частиц.
При рассмотрении двух упомянутых выше туманностей было принято, что они состоят из диэлектрических частиц сферической формы. Сравнение теоретических и наблюдённых значений величины 𝑥(γ)+𝑥(π-γ) (последние приведены в табл. 51) дало для среднего радиуса частицы значение 𝑎=6,7⋅10⁻⁶ см. Примерно такие же значения 𝑎 были найдены для пылевых туманностей и другими способами. Поэтому считается, что средние размеры частиц межзвёздной пыли порядка 10⁻⁵ см.
При определённом радиусе частицы 𝑎 и показателе преломления 𝑚 теория даёт значение коэффициента рассеяния 𝑘, рассчитанного на одну частицу. А так как объёмный коэффициент рассеяния σ известен из наблюдений, то из соотношения σ=𝑛𝑘 можно найти концентрацию частиц 𝑛. Затем может быть найдена плотность пыли в туманности по формуле
𝐷
=
4
3
π𝑘³δ𝑛
,
(32.46)
где δ — удельный вес вещества частицы. В виде примера укажем, что для туманностей IC 431 и IC 435 по формуле (32.47) были получены значения плотности 2,1⋅10⁻²⁴ г/см³ и 4,5⋅10⁻²⁴ г/см³ соответственно. При этом было положено δ=1 г/см³, а для показателя преломления принималось значение 𝑚=1,33 (т.е. такое, как у капли воды или кристалла льда).
Некоторые сведения о пылевых частицах могут быть также получены путём изучения поляризации света туманностей. Наблюдения показывают, что степень поляризации света пылевых туманностей довольно велика — порядка 10—15%. При этом, как и должно быть при отражении света малыми частицами, поляризация является радиальной, т.е. преимущественное направление колебаний электрического вектора перпендикулярно к радиусу-вектору, проведённому от освещающей звезды. Наличие значительной радиальной поляризации излучения говорит о большой роли рассеяния первого порядка в ближайших к звезде областях туманности (так как многократно рассеянное излучение слабо поляризовано). Особенно ценные результаты даёт интерпретация наблюдательных данных о поляризации излучения в разных участках спектра.
Как мы знаем, в Галактике, кроме светлых пылевых туманностей, присутствуют ещё многочисленные тёмные туманности. Изучение этих туманностей по производимому ими поглощению света также позволяет судить о природе частиц межзвёздной пыли.
Исследование межзвёздного поглощения света привело к заключению, что в видимой части спектра коэффициент поглощения приблизительно обратно пропорционален длине волны. Вместе с тем была найдена и величина коэффициента поглощения. В видимой части спектра в галактической плоскости поглощение составляет в среднем одну звёздную величину на килопарсек. Это значит, что пути в 1 килопарсек соответствует приблизительно единичное оптическое расстояние. Поэтому объёмный коэффициент поглощения межзвёздной пыли для визуальных лучей примерно равен α≈3⋅10⁻²² см⁻¹.
С другой стороны, согласно теории рассеяния света малыми частицами зависимость коэффициента поглощения от длины волны определяется заданием размеров частиц и показателя преломления. Если взять диэлектрические частицы с показателем преломления 𝑚=1,33, то коэффициент поглощения будет обратно пропорционален длине волны, когда радиус частицы равен 𝑎≈5⋅10⁻⁵ см.
При таких размерах частиц коэффициент поглощения, рассчитанный на одну частицу, будет приблизительно равен 𝑘≈πα²≈10⁻⁸ см². Пользуясь формулой α=𝑛𝑘 мы для средней концентрации пылевых частиц получаем значение 𝑛≈3⋅10⁻¹⁴ см⁻³. В этом случае формула (32.47) (при δ≈1) даёт, что средняя плотность пылевой материи вблизи плоскости Галактики равна 𝐷≈10⁻²⁶ г/см³.
Как мы увидим дальше, это значение плотности пыли примерно на два порядка меньше плотности газа вблизи галактической плоскости. Следует, однако, иметь в виду, что в Галактике могут существовать крупные частицы, не вызывающие заметного поглощения света, но превосходящие по общей массе частицы, обусловливающие поглощение в видимой области спектра. Поэтому плотность пылевой материи в Галактике может быть несколько больше приведённого выше значения.
Подробные сведения о пылевых частицах в Галактике даны в ряде монографий (см. [3], [4] и др.).
5. Поляризация света звёзд.
Свет звёзд при прохождении через межзвёздную пылевую материю не только ослабляется, но и становится поляризованным. Это явление было открыто В. А. Домбровским и независимо от него Хильтнером и Холлом, а затем подробно изучалось как названными авторами, так и другими. Наблюдения показывают, что степень поляризации света звёзд невелика (доли процента или несколько процентов), но в некоторых случаях доходит до 10%. Плоскость колебаний электрического вектора обычно оказывается близкой к галактической плоскости. Примерно у двух третей звёзд с измеренной поляризацией света угол между этими плоскостями составляет не более 20°.
Поляризация света обнаруживается только у далёких звёзд, причём существует корреляция между поляризацией и поглощением света. В табл. 52 приведена зависимость между степенью поляризации 𝑝, модулем расстояния 𝑚-𝑀 и избытком цвета 𝐸. Мы видим, что чем больше поглощение, тем больше и поляризация. Однако надо иметь в виду, что в таблице содержатся лишь средние значения величин. В отдельных же участках неба эта зависимость выражена очень слабо.
Таблица 52
Связь между степенью поляризации света звёзд,
модулем расстояния и избытком цвета
𝑝, %
𝑚-𝑀
𝐸
0,0-0,4
6,53
0,048
0,5-0,9
8,41
0,082
1,0-1,4
8,56
0,158
1,5-1,9
9,45
0,298
2,0-2,4
10,50
0,394
Наблюдаемая поляризация излучения звёзд может быть объяснена тем, что межзвёздные пылевые частицы имеют удлинённую форму. Как показывают вычисления, доля излучения, поглощённого такой частицей, зависит от угла между её осью и направлением колебаний электрического вектора (поглощение наибольшее, когда этот угол равен нулю). Поэтому излучение, прошедшее через облако некоторым образом ориентированных частиц, должно быть поляризованным. Для объяснения ориентации пылинок была высказана гипотеза о влиянии на них магнитного поля Галактики. При этом напряжённость поля должна быть порядка 10⁻⁵ эрстед. В разных местах Галактики направление поля может быть различным, чем можно объяснить довольно сложную картину распределения поляризации излучения звёзд на небе.
Чтобы магнитное поле могло воздействовать па пылинки, надо допустить наличие в них некоторого количества металлов. С другой стороны, изучение свечения пылевых туманностей приводит к заключению, что в них, по всей вероятности, находятся диэлектрические частицы. Поэтому в настоящее время считается, что межзвёздные пылинки являются диэлектрическими с небольшой примесью металлов. Для объяснения межзвёздного поглощения и поляризации света было высказано также предположение о присутствии в Галактике частиц графита, который по некоторым свойствам (особенно по электропроводности) близок к металлам.
Интересно отметить, что явление поляризации света звёзд в течение значительного времени было одним из основных доводов в пользу существования магнитных полей в Галактике. Затем появились и другие доводы в пользу этого и напряжённость галактического магнитного поля была непосредственно измерена (см. §34).