Литмир - Электронная Библиотека
Содержание  
A
A

Как мы увидим в следующей главе, аналогизаторы довели эту линию рассуждения до логического завершения и в первом десятилетии нового тысячелетия завоевали конференцию NIPS. Коннекционисты еще раз взяли верх, теперь уже под знаменем глубокого обучения. Некоторые говорят, что наука развивается циклами, но она больше похожа на спираль вокруг вектора прогресса. Спираль машинного обучения сходится в Верховном алгоритме. 

Логика и вероятность: несчастная любовь

Вы ошибаетесь, если думаете, что байесовцы и символисты отлично поладят, потому что и те и другие верят в теоретический, а не естественно-научный подход к обучению. Символисты не любят вероятностей и рассказывают анекдоты вроде «Сколько байесовцев нужно, чтобы поменять лампочку? Они сами точно не знают. Если подумать, они даже не уверены, перегорела ли лампочка». А если серьезно, символисты показывают, какую высокую цену приходится платить за вероятность. Логический вывод внезапно становится намного затратнее, все эти числа сложно понять, надо что-то делать с априорной информацией и постоянно убегать от полчищ гипотез-зомби. Пропадает столь милая сердцу символистов способность на лету складывать элементы знаний. Хуже всего то, что неизвестно, как применить распределение вероятностей ко многим проблемам, которые нам надо решить. Байесовская сеть — это распределение по вектору переменных. А что с распределениями по сетям, базам данных, базам знаний, языкам, планам, компьютерным программам и многому другому? Со всем этим легко справляется логика, и, раз алгоритм на это неспособен, это явно не Верховный алгоритм.

Байесовцы, в свою очередь, указывают на хрупкость логики. Если у меня есть правило вроде «Птицы летают», мир даже с одной нелетающей птицей невозможен. Если попытаться залатать все дыры исключениями, например «Птицы летают, если они не пингвины», их получится бесконечно много. (Что со страусами? С птицами в клетке? Мертвыми птицами? Птицами со сломанными крыльями? С промокшими крыльями?) Врач диагностирует рак, и больной решает проконсультироваться еще у одного специалиста. Если второй доктор не согласен с первым, ситуация заходит в тупик. Мнения нельзя взвесить, приходится просто верить обоим. В результате происходит катастрофа: свиньи летают, вечный двигатель возможен, а Земли не существует — потому что в логике из противоречий можно вывести что угодно. Более того, если знание получено из данных, никогда нельзя быть уверенным, что оно истинно. Почему символисты делают вид, что это не так? Юм, несомненно, не одобрил бы такую беззаботность.

Байесовцы и символисты соглашаются, что априорные допущения неизбежны, но расходятся в том, какое априорное знание разрешено. Для байесовцев знание выражается в априорном распределении по структуре и параметрам модели. Априорными параметрами в принципе может быть все что угодно, но, по иронии, байесовцы, как правило, выбирают неинформативные (например, приписывают всем гипотезам одну и ту же вероятность), потому что им так удобнее делать расчеты. И в любом случае люди не очень хорошо умеют оценивать вероятности. Что касается структуры, байесовские сети предполагают интуитивное инкорпорирование знаний: нарисуй стрелку из A в B, если думаешь, что A прямо вызывает B. Символисты намного гибче: можно дать алгоритму машинного обучения в качестве априорного знания все, что можно закодировать путем логики, а логикой можно закодировать практически все при условии, что это «все» — черно-белое.

Очевидно, что нужны и логика, и вероятности. Хороший пример — лечение рака. Байесовская сеть может моделировать отдельный аспект функционирования клеток, например регуляцию генов или фолдинг белка, но только логика может сложить фрагменты в связную картину. С другой стороны, логика не может работать с неполной или зашумленной информацией, которой очень много в экспериментальной биологии, а байесовские сети прекрасно с этим справляются.

Байесовское обучение работает на одной таблице данных, где столбцы представляют переменные (например, уровень экспрессии гена), а строки — случаи (например, наблюдаемый в отдельных экспериментах с микрочипом уровень экспрессии каждого гена). Ничего страшного, если в таблице есть «дыры» и ошибочные измерения, потому что можно применить вероятностный вывод, чтобы заполнить пробелы и сгладить ошибки путем усреднения. Но когда таблиц больше, байесовское обучение заходит в тупик. Оно не знает, например, как соединить данные об экспрессии генов с данными о том, какой сегмент ДНК кодирует белки, и как, в свою очередь, трехмерная форма этих белков заставляет их прикрепляться к разным частям молекулы ДНК, влияя на экспрессию других генов. В случае логики мы легко можем составить правила, связывающие все эти аспекты, и получить соответствующие комбинации таблиц, но только при условии, что в таблицах нет ошибок и белых пятен.

Соединить коннекционизм и эволюционизм довольно легко: просто эволюционируйте структуру сети и получите параметры путем обратного распространения ошибки. Объединить логику и вероятностный подход намного сложнее. Попытки решить эту проблему предпринимал еще Лейбниц, который был пионером в обеих областях, а после него — лучшие философы и математики XIX и XX века, например Джордж Буль и Рудольф Карнап. Несмотря на все усилия, результаты были очень скромными. Позднее в бой вступили информатики и исследователи искусственного интеллекта, но к началу нового тысячелетия они достигли лишь частичных успехов, например, к байесовским сетям добавили логические конструкты. Большинство экспертов были убеждены, что объединить логику и вероятности вообще невозможно. Перспективы создания Верховного алгоритма выглядели неважно, особенно потому, что существовавшие тогда эволюционистские и коннекционистские алгоритмы тоже не могли справиться с неполной информацией и множественными наборами данных.

К счастью, с тех пор мы продвинулись вперед на пути к решению проблемы, и сегодня Верховный алгоритм кажется намного ближе. Решение мы увидим в главе 9, но сначала надо подобрать все еще недостающую очень важную часть мозаики: как учиться, если данных очень мало. Здесь вступает в игру одна из самых важных идей в машинном обучении: аналогия. У всех «племен», которые мы до сих пор встретили, есть одна общая черта: они получают явную модель рассматриваемого явления, будь то набор правил, многослойный перцептрон, генетическая программа или байесовская сеть. Если у них для этого недостаточно данных, они заходят в тупик. А аналогизаторам для обучения достаточно всего одного примера, потому что они модели не формируют. Давайте посмотрим, чем они вместо этого занимаются.

ГЛАВА 7

ТЫ — ТО, НА ЧТО ТЫ ПОХОЖ

Фрэнк Абигнейл-младший — один из самых знаменитых мошенников в истории, Леонардо Ди Каприо сыграл его в фильме Спилберга «Поймай меня, если сможешь». Абигнейл подделывал чеки на миллионы долларов, прикидывался адвокатом и преподавателем колледжа, путешествовал по миру, выдавая себя за пилота Pan Am, и все это когда ему еще не исполнился 21 год. Но, наверное, самая сногсшибательная его проделка — это когда он в конце 1960-х почти год успешно изображал врача в Атланте. Казалось бы, чтобы заниматься медициной, нужно много лет учиться в медицинском институте, пройти ординатуру, получить лицензию и так далее, но Абигнейлу удалось обойти эти мелочи, и все были довольны.

Представьте на секунду, что вам предстоит провернуть нечто подобное. Вы тайком пробираетесь в пустой медицинский кабинет. Вскоре появляется пациент и рассказывает вам о своих симптомах. Надо поставить ему диагноз, только вот в медицине вы ничего не смыслите. В вашем распоряжении — шкаф с историями болезней: симптомы, диагнозы, назначенное лечение и так далее. Как вы поступите? Самое простое — это заглянуть в документы, поискать пациента с самыми похожими симптомами и поставить такой же диагноз. Если вы умеете вести себя с больным и убедительно говорить, как Абигнейл, этого может оказаться достаточно для успеха. Та же идея успешно применяется и за пределами медицины. Если вы молодой президент и столкнулись с мировым кризисом, как в свое время Кеннеди, когда самолет-разведчик обнаружил на Кубе советские ядерные ракеты, вполне вероятно, что готового сценария у вас не окажется. Вместо этого можно поискать похожие примеры в истории и попытаться сделать из них выводы. Объединенный комитет начальников штабов подталкивал президента напасть на Кубу, но Кеннеди только что прочитал The Guns of August[92] — бестселлер о начале Первой мировой войны — и хорошо осознавал, что такой шаг легко может вылиться в тотальную войну. Кеннеди предпочел морскую блокаду — и, может быть, спас мир от ядерной катастрофы.

вернуться

92

Такман Б. Августовские пушки. М. : Астрель, 2012.

49
{"b":"546805","o":1}