Литмир - Электронная Библиотека
Содержание  
A
A

Итак, вы готовы? Наш путь начнется с визита к символистам, «племени» с самой солидной родословной.

ГЛАВА 3

ПРОБЛЕМА ИНДУКЦИИ ЮМА

Вы рационалист или эмпирик?

Рационалисты считают, что чувства обманчивы и единственный верный путь к знанию — логическое рассуждение. Эмпирики уверены, что рассуждения подвержены ошибкам и знание должно быть получено из наблюдений и экспериментов. Французы — рационалисты. Англосаксы (как их называют французы) — эмпирики. Мыслители, юристы и математики — рационалисты. Журналисты, врачи и ученые — эмпирики. «Она написала убийство» — рационалистический криминальный телесериал. «C.S.I.: Место преступления» — эмпирический. В мире информатики теоретики и инженеры знаний — рационалисты. Хакеры и специалисты по машинному обучению — эмпирики.

Рационалисты любят планировать все заранее, еще до того, как сделают первый шаг. Эмпирики предпочитают пробовать и смотреть, что получится. Не знаю, существует ли ген рационализма или эмпиризма, но, глядя на моих коллег-информатиков, я пришел к выводу, что это почти черты характера: некоторые рационалистичны до мозга костей и не могут быть другими, а другие — насквозь эмпирики и всегда такими были. Представители обоих полюсов могут разговаривать друг с другом и иногда пользоваться полученными другим лагерем результатами, но понимают друг друга лишь отчасти. В глубине души каждый из них верит, что то, чем занимается оппонент, — вторично и не очень интересно.

Рационалисты и эмпирики, наверное, существовали с самого зарождения Homo sapiens. Перед тем как выйти на охоту, Пещерный Бобби долго сидел у костра и размышлял, где его поджидает добыча. Тем временем Пещерная Алиса систематически прочесывала территорию. Поскольку оба вида дошли до наших дней, наверное, будет правильно сказать, что ни один подход не лучше другого. Вы можете подумать, что машинное обучение — это окончательный триумф эмпириков, но скоро мы увидим, что все не так однозначно.

«Рационализм или эмпиризм?» — любимый вопрос философов. Платон был ранним рационалистом, а Аристотель — ранним эмпириком. Но по-настоящему дебаты разгорелись в эпоху Просвещения, когда по каждую сторону встали по три великих мыслителя: Декарт, Спиноза и Лейбниц были ведущими рационалистами; Локк, Беркли и Юм — их соперниками-эмпириками. Доверяя своей силе рассуждения, рационалисты сочиняли теории Вселенной, которые, мягко говоря, не прошли проверку временем, но помимо этого они изобрели фундаментальные математические методики, например математический анализ и аналитическую геометрию. Эмпирики были гораздо практичнее, и их влияние прослеживается везде, начиная с научного метода и заканчивая Конституцией США.

Выдающимся эмпириком и величайшим англоязычным философом всех времен был Дэвид Юм. О его серьезнейшем влиянии говорили такие ученые, как Адам Смит и Чарльз Дарвин, а еще его можно назвать святым покровителем символистов. Юм родился в Шотландии в 1711 году и большую часть своей жизни провел в Эдинбурге, который в XVIII веке процветал и бурлил интеллектуальной жизнью. Юм был человеком добродушным, но при этом строгим скептиком и много времени посвящал разрушению мифов своего времени. Он довел начатые Локком рассуждения об эмпирике до логического завершения и задал вопрос, который с тех пор, как дамоклов меч, висит над любым знанием, от самого банального до самого сложного: как в принципе можно оправдать экстраполяцию того, что мы видели, на то, чего мы не видели? Каждый обучающийся алгоритм в каком-то смысле — попытка ответить на этот вопрос.

Вопрос Юма — отправная точка нашего путешествия. Начнем с того, что проиллюстрируем его примером из повседневной жизни и встретим ее современное воплощение в знаменитой теореме No free lunch — «Бесплатных обедов не бывает»[43]. Затем мы посмотрим, что отвечают Юму символисты. Это подведет нас к самой важной проблеме машинного обучения: проблеме переобучения, то есть выделения фантомных закономерностей, которых на самом деле нет. Мы посмотрим, как ее решают символисты и почему машинное обучение — сердце своего рода алхимии, философский камень превращения данных в знания. Для символистов этот камень — само знание. В следующих четырех главах мы увидим решения алхимиков из других «племен». 

Быть или не быть свиданию?

У вас есть знакомая девушка, которая вам очень нравится. Вы хотите пригласить ее на свидание, однако вам уже приходилось сталкиваться с отказами, и вы решили задать вопрос, только если будете твердо уверены, что она скажет «да». Пятничным вечером вы сидите с мобильником в руке и пытаетесь решить, звонить или не звонить. Вы помните, что в прошлый раз она не согласилась. Но почему? До этого она два раза сказала «да», потом «нет». Может быть, есть какие-то дни, когда она не хочет никуда ходить? Или, может быть, она любит клубы, а рестораны, напротив, ей не нравятся? Вы человек, необычайно любящий систему, поэтому откладываете телефон в сторону и набрасываете на листке бумаги все, что помните по прошлым встречам. 

Верховный алгоритм: как машинное обучение изменит наш мир - i_003.jpg

Итак, что вас ждет? Быть свиданию или не быть? Есть ли какая-то закономерность во всех этих «да» и «нет»? И самое главное — что эта схема скажет о сегодняшнем дне?

Понятно, что одного фактора для прогнозирования мало. В какие-то выходные она хотела куда-нибудь сходить, а в другие — нет. Иногда ей хотелось развлечься в клубе, а иногда не хотелось и так далее. А как насчет сочетания факторов? Может быть, она любит по выходным ходить в клуб? Нет, не то: случай номер четыре перечеркивает эту догадку. А может быть, она любит гулять только в теплые вечера? В точку! Сработало! В таком случае, учитывая, что на улице морозец, сегодня вечером шансов маловато. Погодите! А что если она любит ходить в клуб, когда по телевизору нет ничего интересного? Это тоже обоснованное предположение, и в таком случае сегодня вас ждет «да»! Быстрее, надо позвонить ей, пока не очень поздно. Стоп. Как узнать, что эта закономерность правильная? Целых два варианта согласуются с вашим прошлым опытом, но они дают противоположные прогнозы. Подумаем еще раз: а если она ходит в клуб только в хорошую погоду? Или она выходит из дома по выходным, когда по телевизору нечего смотреть? Или…

Тут вы в отчаянии комкаете листок бумаги и швыряете его в мусорную корзину. Ничего не получается! Как быть?! Дух Юма печально кивает у вас за плечом. У вас нет никаких оснований предпочесть одно обобщение другому. «Да» и «нет» — одинаково допустимые ответы на вопрос «Что она скажет?». А часы тикают. С горечью вы вытаскиваете из кармана пятак и почти готовы его подбросить.

Вы не одиноки в своем затруднении — оно знакомо и нам. Мы буквально только что отправились в путь навстречу Верховному алгоритму и, похоже, уже наткнулись на непреодолимое препятствие. Есть хоть какой-нибудь способ научиться чему-то на прошлом опыте, чтобы с уверенностью применять знание в будущем? А если такого способа нет, не станет ли машинное обучение безнадежным предприятием? Если уж на то пошло, не построена ли вся наука или даже все человеческое знание на довольно шаткой почве?

Непохоже, чтобы проблему решало увеличение объема данных. Вы можете быть супер-Казановой и встречаться с миллионами женщин, по тысяче раз с каждой, но ваш обширный архив все равно не ответит на вопрос, что эта женщина ответит в этот раз. Даже если сегодняшний случай в точности напоминает тот, когда она сказала «да» — тот же день недели, тот же вид свидания, та же погода и те же шоу по телевизору, — это все еще не означает, что она согласится. Вполне может быть, что ее ответ определяется каким-то фактором, о котором вы не подумали или который не можете оценить. Или, может быть, в ее ответах нет ни ладу, ни складу: они случайные, и вы просто ставите себе палки в колеса, пытаясь отыскать в них какую-то схему.

вернуться

43

Теорема «Бесплатных обедов не бывает» (No free lunch) гласит: не существует алгоритма, позволяющего получить оптимальные решения всех возможных задач. Теорема получила название на основе метафоры о стоимости блюд в различных ресторанах. Допустим, существует определенное количество ресторанов (каждый из них обозначает определенный алгоритм прогнозирования), где в меню различным блюдам (каждое блюдо обозначает определенную задачу прогнозирования) сопоставлена цена (или качество решения этой задачи, которое позволяет получить рассматриваемый алгоритм). Человек, который любит поесть и при этом не прочь сэкономить, может определить, какой ресторан предлагает его любимое блюдо по самой выгодной цене. Вегетарианец, сопровождающий этого обжору, наверняка обнаружит, что его любимое вегетарианское блюдо в этом ресторане стоит намного дороже. Если обжора захочет полакомиться бифштексом, он выберет ресторан, где бифштекс подают по самой низкой цене. Но его друг-вегетарианец при этом вынужден будет заказать единственное вегетарианское блюдо в этом ресторане, пусть даже по заоблачной цене. Это очень точная метафора ситуации, когда необходимость использования определенного алгоритма для решения конкретной задачи приводит к гарантированно неоптимальным результатам.

19
{"b":"546805","o":1}