Литмир - Электронная Библиотека
Содержание  
A
A

Кандидаты, которые не оправдали надежд

Итак, если Верховный алгоритм существует, на что он похож? На первый взгляд, очевидный ответ — на запоминание. Просто запоминай все, что видишь, и через некоторое время увидишь все, что только можно увидеть, и таким образом узнаешь все, что только можно узнать. Проблема в том, что, как сказал Гераклит, в ту же реку нельзя войти дважды. В мире куда больше вещей, чем мы в состоянии увидеть. Неважно, сколько снежинок вы исследуете: следующая будет другой. Даже если бы вы присутствовали при Большом взрыве и после этого везде и всюду, вы все равно увидели бы лишь крохотную долю того, что могли бы увидеть в будущем. Если бы вы десять тысяч лет наблюдали за жизнью на Земле, это не подготовило бы вас к тому, что еще предстоит. Человек, выросший в одном городе, не впадает в ступор, когда переезжает в другой, однако робот, способный только запоминать, впал бы. Кроме того, знание — это не просто длинный список фактов. Знание бывает обобщенным и структурированным. «Все люди смертны» — намного более емкое утверждение, чем семь миллиардов свидетельств о смерти, по одному на каждого человека. Запоминание же не даст нам ни обобщенности, ни структуры.

Другой кандидат в Верховные алгоритмы — микропроцессор. В принципе, процессор в вашем компьютере можно рассматривать как единый алгоритм, работа которого — выполнять другие алгоритмы, подобно универсальной машине Тьюринга, и он может выполнять любые мыслимые алгоритмы до границ своей памяти и производительности. Для микропроцессора алгоритм — просто еще один вид данных. Проблема в том, что сам по себе микропроцессор ничего делать не умеет: он просто сидит весь день без дела. Откуда берутся алгоритмы, которые он выполняет? Если они были закодированы программистом-человеком, никакого обучения нет. Тем не менее в каком-то отношении микропроцессор — удачный аналог Верховного алгоритма. Микропроцессор — не самое оптимальное оборудование для запуска отдельных алгоритмов, для этого гораздо больше подходят разработанные для конкретной задачи интегральные схемы специального назначения (application-specific integrated circuit, ASIC). Однако почти для всех приложений мы используем именно микропроцессоры, потому что их гибкость с лихвой компенсирует относительную неэффективность. Если бы нам приходилось разрабатывать ASIC для каждого нового приложения, информационная революция никогда бы не состоялась. Верховный алгоритм — тоже не лучший алгоритм для изучения конкретного элемента знаний. Эффективнее был бы алгоритм, в который уже заложена большая часть этого знания (или знание целиком: тогда данные будут избыточны). Однако вся суть в том, чтобы вывести знание из данных путем индукции. Это легче и дешевле, поэтому чем более обобщен алгоритм машинного обучения, тем лучше.

Еще более радикальный кандидат — скромный вентиль ИЛИ-НЕ, логический переключатель, который на выходе дает единицу, если на входе два нуля. Не забывайте, что все компьютеры построены из логических вентилей в виде транзисторов и все вычисления можно свести к комбинациям элементов И, ИЛИ и НЕ. Вентиль ИЛИ-НЕ — это просто элемент ИЛИ, за которым следует элемент НЕ: отрицание дизъюнкции[38], как в предложении «Я счастлив, если не голоден и не болен». Элементы И, ИЛИ и НЕ можно реализовать с использованием вентилей ИЛИ-НЕ, поэтому этот вентиль может делать все. Вообще говоря, некоторые микропроцессоры только его и используют. Так почему же он не может стать Верховным алгоритмом? Ведь он, безусловно, непревзойден в своей простоте. К сожалению, вентиль ИЛИ-НЕ — Верховный алгоритм не в большей степени, чем кубик лего — универсальная игрушка. Конечно, детали конструктора как кирпичики и из них многое можно построить, но гора элементов самопроизвольно ни во что не сложится. То же относится к другим простым вычислительным схемам, например сетям Петри[39] и клеточным автоматам[40].

Перейдем к более сложным кандидатам. Например, к запросам, на которые может ответить любой хороший движок базы данных, или простых алгоритмов в статистическом пакете. Разве их недостаточно? Это более крупные детали лего, но по-прежнему всего лишь кирпичики. Движок базы данных никогда не откроет ничего нового: он просто сообщает то, что знает. Даже если все люди в базе данных смертны, ему не придет в голову экстраполировать эту черту на других людей (проектировщики баз данных побледнели бы от самой этой мысли). Статистика в основном заключается в проверке гипотез, которые кто-то сначала должен сформулировать. Статистические пакеты умеют выполнять линейную регрессию и другие простые процедуры, но они мало чему могут научиться, сколько бы данных им ни предоставили. Качественные пакеты входят в серую зону между статистикой и машинным обучением, но все равно остается множество видов знания, которое они не могут открыть.

Ладно, давайте начистоту. Верховный алгоритм — это уравнение U(X) = 0. Он уместится не то что на футболке, а даже на почтовой марке! Уравнение U(X) = 0 говорит, что определенная (возможно, очень сложная) функция U какой-то (возможно, очень сложной) переменной X равна нулю. К этой форме можно свести любое уравнение. Например, F = ma можно записать в виде F – ma = 0, поэтому, если считать F – ma функцией U переменной F — вуаля: U(F) = 0. В целом X может быть любыми вводными данными, а U — любым алгоритмом, поэтому, конечно, Верховный алгоритм не может быть более общим, чем это уравнение, а поскольку мы ищем самый общий алгоритм из всех возможных, это должен быть он. Конечно, я шучу, но конкретно этот неудачный кандидат указывает на одну из реальных опасностей в машинном обучении: создание настолько общего обучающегося алгоритма, что он окажется недостаточно содержательным, чтобы быть полезным.

Так какое же минимальное содержание может иметь обучающийся алгоритм, чтобы оставаться полезным? Законы физики? В конце концов, все в этом мире им подчиняется (по крайней мере, мы так думаем), они породили эволюцию, а в ходе эволюции — головной мозг. Может быть, Верховный алгоритм и правда скрыт в законах физики, но, если это так, нам надо выразить его явно. Если просто подбрасывать законам физики данные, новых законов не получишь. На это можно посмотреть следующим образом: возможно, основная теория какой-то дисциплины — просто законы физики, облеченные в удобную для этой дисциплины форму. Но если это действительно так, нам нужен алгоритм, который найдет кратчайший путь из данных этой дисциплины к ее теории, и непонятно, смогут ли законы физики в этом помочь. Еще один аспект заключается в следующем: если бы законы физики были иными, Верховный алгоритм все равно во многих случаях смог бы их открыть. Математики любят говорить, что Бог может нарушать законы физики, но даже он не бросает вызов законам логики. Возможно, это так, но законы логики предназначены для дедукции, а нам нужно что-то подобное для индукции. 

Пять «племен» машинного обучения

Конечно, охоту за Верховным алгоритмом не надо начинать с нуля. У нас за плечами несколько десятилетий исследований машинного обучения, на которые можно опереться. Лучшие умы планеты посвятили свои жизни разработке обучающихся алгоритмов, а кто-то даже утверждает, что универсальный алгоритм уже у него в руках. Хотя мы стоим на плечах гигантов, такие заявления надо принимать с долей скептицизма, и тогда возникает вопрос: как понять, что Верховный алгоритм найден? Мы поймем это тогда, когда один и тот же обучающийся алгоритм, в котором допустимо только менять параметры, на основе минимальных исходных данных сможет научиться понимать видео и текст так же хорошо, как человек, сделает важные открытия в биологии, социологии и других науках. Очевидно, что по этим стандартам ни один алгоритм машинного обучения пока нельзя признать Верховным, даже в том маловероятном случае, что он уже найден.

вернуться

38

Дизъюнкция (лат. disjunctio — разобщение) — логическая операция, по своему применению максимально приближенная к союзу «или» в смысле «или то, или это, или оба сразу». Синонимы: логическое «ИЛИ», включающее «ИЛИ», логическое сложение, иногда просто «ИЛИ».

вернуться

39

Математический аппарат для моделирования динамических дискретных систем. Впервые описаны Карлом Петри в 1962 году.

вернуться

40

Набор клеток, образующих некую периодическую решетку с заданными правилами перехода, определяющими состояние клетки в следующий момент через состояние клеток, находящихся от нее на расстоянии не больше некоторого, в текущий момент времени.

17
{"b":"546805","o":1}