Литмир - Электронная Библиотека
Содержание  
A
A

4

3

π𝑟³ρ

+

𝑀₀

.

На основании закона сохранения количества движения имеем

4

3

π𝑟³ρ

+

𝑀₀

𝑣

=

𝑀₀𝑣₀

,

(30.39)

где 𝑣₀ — скорость оболочки в начальный момент и 𝑣 оболочки на расстоянии 𝑟 от звезды.

Подставляя в уравнение (30.39) 𝑑𝑟/𝑑𝑡 вместо 𝑣 и интегрируя, получаем

1

3

π𝑟⁴ρ

+

𝑀₀𝑟

=

𝑀₀𝑣₀𝑡

,

(30.40)

где 𝑡 — время, протекшее от начала вспышки. Соотношение (30.40) определяет радиус оболочки 𝑟 в зависимости от времени 𝑡.

Чтобы найти, как меняется скорость расширения оболочки с течением времени, надо воспользоваться формулами (30.39) и (30.40). Найдём, например, промежуток времени, в течение которого скорость уменьшится вдвое. Из (30.39) видно, что 𝑣 будет равно ½𝑣₀, когда

4

3

π𝑟³ρ

=

𝑀₀

.

(30.41)

Подставляя (30.41) в (30.40), для искомого промежутка времени получаем

𝑡

=

5

4𝑣₀

3𝑀₀

4πρ

⎞¹/₃

(30.42)

В таблице 48 даны промежутки времени, в течение которых скорость оболочки уменьшается соответственно в два и сто раз, а также радиусы оболочки в моменты достижения указанных скоростей. Для плотности межзвёздной среды принято её среднее значение ρ=3⋅10⁻²⁴ г/см³, а для начальной скорости оболочки 𝑣₀=1000 км/с. Таблица составлена для трёх значений массы оболочки: 10⁻⁵, 10⁻⁴ и 10 масс Солнца.

Таблица 48

Торможение оболочек под действием

сопротивления межзвёздной среды

𝑀₀/𝑀

10⁻⁵

10⁻⁴

10

𝑣/𝑣₀

0,5

0,01

0,5

0,01

0,5

0,01

𝑡

в годах

48

4500

102

9800

48000

45 000

𝑡

в парсеках

0,04

0,18

0,08

0,38

3,8

17,6

Оорт, впервые занимавшийся рассматриваемой задачей, произвёл также сравнение теории с наблюдениями. Из таблицы видно, что торможение оболочек новых должно стать заметным через несколько десятилетий. Однако, вообще говоря, это не наблюдается. Например, оболочка Новой Орла 1918 г. расширялась без замедления 30 лет. По-видимому, отсутствие заметного торможения в данном случае объясняется сравнительно большой массой оболочки (равной 10⁻⁴ 𝑀). Другое возможное объяснение состоит в том, что за промежуток времени между вспышками новая не успевает покинуть область, из которой межзвёздное вещество было изгнано предыдущей вспышкой.

Если вспышка новой произошла в месте с повышенной плотностью межзвёздного вещества, то обнаружение торможения оболочки становится более вероятным. В связи с этим большой интерес представляет Новая Персея 1901 г., вспыхнувшая, как мы знаем, внутри пылевой туманности и осветившая её. Сравнение фотографий оболочки этой новой, полученных в 1917 и 1934 гг., показало, что за указанное время оболочка замедлила своё движение и в некоторых случаях деформировалась. Последнее можно объяснить неоднородностью пылевой туманности. Интересно, что деформированный край оболочки является весьма ярким. Согласно Оорту свечение вызывается столкновениями атомов оболочки с частицами пылевой туманности. В этом состоит дополнительное подтверждение торможения оболочки.

Как уже сказано, при изучении движения оболочки новой следует одновременно учитывать как ускорение оболочки выбрасываемым из звезды веществом, так и торможение её межзвёздной средой. Это было сделано в работе И. Н. Минина (см. [2]). Из его решения в виде частных случаев вытекают законы движения оболочки, приведённые выше.

§ 31. Сверхновые звёзды

1. Результаты наблюдений.

Как мы уже знаем, абсолютные величины новых звёзд в максимуме блеска равны в среднем -7𝑚 Однако существуют и такие вспыхивающие звёзды, которые в максимуме блеска в тысячи и десятки тысяч раз ярче новых. Эти звёзды называются сверхновыми.

Сверхновые звёзды вспыхивают гораздо реже новых. За последнее тысячелетие в нашей Галактике наблюдалось только три сверхновых. Одна из них, согласно китайским летописям, вспыхнула в созвездии Тельца в 1054 г. Вторую сверхновую наблюдал Тихо Браге в 1572 г. в Кассиопее, а третью — Кеплер в 1604 г. в Змееносце. Однако сверхновые звёзды, вследствие их огромной яркости, могут обнаруживаться и в других галактиках. Первая из таких сверхновых была открыта в туманности Андромеды в 1885 г. (S Андромеды). В дальнейшем в других галактиках были обнаружены десятки сверхновых, причём для многих из них получены спектры и кривые блеска.

Как установлено Минковским, по характеру изменений блеска и спектра сверхновые делятся на два типа. Сверхновые I типа обладают очень похожими друг на друга кривыми блеска, причём падение блеска происходит экспоненциально. Кривые блеска сверхновых II типа отличаются большим разнообразием и некоторым сходством с кривыми блеска обычных новых. Спектры сверхновых I типа состоят из ярких полос, разделённых более тёмными промежутками. Эти полосы пока не идентифицированы. Лишь на сравнительно поздней стадии в спектрах видны две полосы, отождествляемые с запрещёнными линиями λ 6300 и λ 6364 λ нейтрального кислорода. По ширине этих полос можно сделать заключение о скорости движения выброшенной оболочки порядка 1000 км/с. Сверхновые II типа до момента максимума блеска имеют непрерывный спектр с большой интенсивностью ультрафиолетового конца (цветовая температура — около 40 000 K). После достижения максимума блеска в спектре появляются широкие яркие полосы, отождествляемые с известными линиями (𝙷, 𝙽 III и др.). Ширина этих полос говорит об огромных скоростях расширения оболочек — порядка 6000 км/с. По-видимому, сверхновые I и II типов существенно отличаются друг от друга по своей физической природе.

На месте вспышек сверхновых звёзд обнаруживаются быстро расширяющиеся газовые туманности. Трудно сомневаться в том, что они образуются в результате выбрасывания вещества при вспышках сверхновых. На месте сверхновой 1054 г. в настоящее время наблюдается Крабовидная туманность, расширяющаяся со скоростью порядка 1 100 км/с. Если скорость расширения считать постоянной, то время начала расширения приблизительно совпадёт с эпохой вспышки. Крабовидная туманность очень хорошо изучена и о ней будет подробно говориться ниже. Остатки сверхновых 1572 г. и 1604 г. представляют собой расширяющиеся волокнистые туманности. Однако яркость этих туманностей мала и их изучение встречает трудности.

Для понимания природы сверхновых звёзд большое значение имеет тот факт, что их остатки являются сильными источниками радиоизлучения. Первоначально был измерен поток радиоизлучения от Крабовидной туманности (Болтоном в 1947 г.), а затем и от остатков сверхновых 1572 г. и 1604 г. Наблюдения показывают, что интенсивность этого излучения убывает с ростом частоты, и обычно она представляется в виде

𝐼

ν

~

ν

-𝑛

148
{"b":"635766","o":1}