Литмир - Электронная Библиотека
Содержание  
A
A

В более поздних работах Парсонс попытался реабилитировать теорию универсальных особенностей социальной эволюции (эволюционных универсалий). Развитие социальной стратификации и различных форм дифференциации является необходимым, например для увеличения долговременной способности общества к адаптации. Общество также должно быть способно к легитимации различных форм неравенства. Эффективное управление предполагает развитие бюрократии. Политическая демократия важна для способности общества к солидарности. В этом заключается попытка Парсонса развить веберовскую теорию рационализации.

Парсонсовская социология может также рассматриваться как серьезный ответ на то, что он называет «парадоксом Гоббса». Каким образом возможно возникновение общества на основе принципов гоббсовской теории естественного состояния? Как мы можем, учитывая имеющийся дефицит ресурсов, избежать всеобщей борьбы всех против всех? Парсонс утверждает, что хорошо упорядоченное общество может быть реализовано только тогда, когда существует институционализированная система норм, регулирующая отношения между индивидами («институционализация общих норм»). Очень важным для возникновения общественной стабильности является нормативный элемент. Но как мы можем избежать того, чтобы такое общество не стало слишком «замкнутым», например неприемлемым, полностью зарегулированным, фашистским «новым порядком»? Здесь мы снова должны обратиться к типовым переменным действия (универсализм — партикуляризм и т. д.). Однако Парсонс не разъясняет, как можно обосновать универсальные ценности. Эта проблема находится в центре учения Хабермаса (см. Гл. 30).

Глава 28.

Новые успехи естествознания

Эйнштейн и современная физика

В XX веке в научном сообществе произошли серьезнейшие изменения. Существенно увеличилось количество активных исследователей и расширился спектр разрабатываемых тем и направлений. Эта экспансия затронула все области исследования, но особенно различные естественные науки и их технические приложения. Гражданские и военные отрасли индустрии стали существенно зависеть от уровня развития многих сфер естественно-научного исследования.

Мы дадим только краткий обзор развития современной физики, уделяя особое внимание тем моментам, которые породили новые философские проблемы.

В качестве исходного пункта обратимся к галилеево-ньютоновской физике. Она являлась основой механистической картины мира, утверждавшей, что все природные явления подчиняются строгим причинным связям. Кроме того, для этой картины мира было характерно определенное понимание эпистемологической ситуации, а именно: считалось, что субъект наблюдает объект таким, каков он есть с присущими ему так называемыми первичными свойствами, то есть весом, длиной, высотой и т. д. (Тогда как так называемые вторичные свойства не принадлежат объекту, но возникают в субъекте, когда он воспринимает чувственные впечатления). Такую эпистемологию часто называют «реализмом», ибо она утверждает, что мы наблюдаем то, что «реально существует». Она критиковалась эмпирицистами от Беркли до Юма, а также Кантом.

Огрубленно можно сказать, что наряду с переходом от классической к современной физике произошла и эпистемологическая трансформация. До нее ученые в основном полагали, во-первых, что исследователь познает естественные процессы, как они существуют. Во-вторых, они считали, что природа может быть понята согласно принципам, которые обнаруживаются в связанных с техникой явлениях, таких как равновесие тел, падение шаров и т. д. После эпистемологической трансформации современной физики естественные события предстали как продукт функционирования нашего современного оборудования, предназначенного для экспериментов и наблюдений. Этот продукт столь зависим от используемой сейчас техники и достигнутого уровня технологического мастерства, что ставит под сомнение «реалистическую» предпосылку. Ученые начали систематически применять математические модели для понимания наблюдений. При этом некоторые из физиков отказались от предположения, что наблюдаемое существует независимо от понятий и приборов, используемых ими для измерения и наблюдения.

Указанный момент неизбежного влияния «субъективных» факторов на «объект» затрагивает и наш способ определения понятий. В геометрии Евклида имелась только одна прямая линия между двумя точками. Однако когда понятие прямой линии определяется операционально, то есть при помощи проводимых нами измерений и использования в них световых лучей, то определение прямой линии зависит от совокупности применяемых нами операций. Тогда соответственно различным наборам операций мы имеем операционально различные определения прямой линии. Поэтому с операциональной точки зрения, в принципе, между двумя точками можно провести несколько «прямых линий».

Важным следствием рассматриваемой эпистемологической трансформации является то, что мы как исследователи, с нашим оборудованием и нашими операциональными определениями, помогаем конституировать исследуемый нами объект.

В этом плане Кант был прав! Но эпистемологическая трансформация также свидетельствует и против кантовской точки зрения. Ведь он считал, что геометрия Евклида является истинной и что способы конституирования объектов неизменны. Однако в современной физике существует, в принципе, несколько различных операциональных подходов, то есть разных операциональных способов конституирования объектов.

Решающими для становления современной физики оказались исследования атома. В 1911 г. Эрнест Резерфорд (Ernest Rutherford, 1871–1937) доказал, что атом состоит из ядра и вращающихся вокруг него электронов. Один из учеников Резерфорда, датский физик Нильс Бор (Niels Bohr, 1885–1963) развил эту модель. Согласно боровской модели атомов, электроны вращаются по разным орбитам. Они излучают энергию, переходя с более дальней на более близкую к ядру орбиту, и поглощают ее при переходах в обратном направлении. При этом энергия может испускаться и поглощаться только дискретными порциями — квантами. Дальнейшие теоретические и экспериментальные исследования привели к пониманию того, что электроны обладают одновременно свойствами и частиц и волн. Некоторые физики полагают, что причина этого в том, что объект исследования формируется нашими понятиями и методами. При одних экспериментальных условиях электроны предстают как волны, а при других — как частицы. Говоря словами Бора, свойство быть частицей и свойство быть волной являются взаимодополнительными. Это означает, что описание результатов эксперимента необходимо должно включать и ссылку на экспериментальные условия его проведения.

Вернер Гейзенберг (Werner Heisenberg, 1901–1976), работавший в институте Бора в 1920-х гг., обратил внимание на аналогичное важное эпистемологическое обстоятельство. На микроуровне всегда сказывается влияние условий наблюдения и измерения на исследуемый объект. В результате влияния мы не в состоянии одновременно измерять сколь угодно точно его импульс и пространственное положение (а также энергию и временной интервал). Когда мы находим точную пространственную локализацию частицы, то не можем точно определить ее импульс, а когда точно измеряем импульс, то не можем определить пространственную локализацию частицы. В этом и заключается содержательно суть так называемого соотношения неопределенностей, которое вместе с дискретными квантовыми скачками привело ряд ученых к статистической точке зрения на причинность (иногда называемую индетерминизмом). Согласно этой точке зрения, в отличие от классической физики причина в квантовой физике ищется не для каждого отдельного события, а только для некоторого их статистически значимого количества.

Точно так же, как при своем возникновении классическая физика вызвала к жизни всесторонние философские дискуссии (от эмпирицистов и рационалистов до Канта), современная физика породила интенсивные философские споры. Во многом в результате попыток осмысления квантовой и релятивистской физики возник логический позитивизм, являвшийся доминирующей школой философии науки между двумя мировыми войнами. Кроме того, многие ведущие естествоиспытатели лично занимались связанными с новой физикой философскими вопросами. Это относится к Гейзенбергу, Бору, Эйнштейну и др.

189
{"b":"130452","o":1}