Литмир - Электронная Библиотека
Содержание  
A
A

3. Модели планетных атмосфер.

Результаты наблюдений планет в разных участках спектра (видимом, инфракрасном и радиодиапазоне) служат основой для построения моделей планетных атмосфер. Такие модели разрабатывались для ряда планет (Венеры, Марса, Юпитера). Здесь в виде примера мы лишь кратко рассмотрим модель атмосферы Венеры.

При разработке модели планетной атмосферы задаётся некоторая схема строения атмосферы, её химический состав и механизм переноса энергии. В результате расчёта определяется распределение плотности и температуры в атмосфере. Это позволяет вычислить оптические глубины в атмосфере для разных частот, а затем и интенсивности выходящего из атмосферы излучения в разных участках спектра. Сравнение теоретических и наблюдённых интенсивностей излучения даёт возможность сделать проверку рассчитанной модели.

Для атмосферы Венеры наиболее вероятной считается парниковая модель, сущность которой заключается в следующем. Солнечное излучение, падающее на атмосферу, частично ею отражается, а частично пропускается (вообще говоря, после многократных рассеяний, которые были рассмотрены в § 19). Прошедшее через атмосферу солнечное излучение нагревает поверхность, и от неё идёт тепловое излучение в далёкой инфракрасной области спектра. Однако оптическая толщина атмосферы в инфракрасной области спектра очень велика. Поэтому значительная часть инфракрасного излучения идёт от атмосферы обратно к поверхности, благодаря чему она ещё более нагревается. В результате процесса переноса излучения устанавливается равновесное состояние, при котором энергия теплового излучения, выходящего из атмосферы наружу, равна энергии солнечного излучения, падающего на поверхность планеты. Подобные процессы происходят в парниках и оранжереях (в которых, однако, стекло не столько поглощает идущее от почвы тепловое излучение, сколько преграждает конвекцию).

Легко найти приближённое распределение температуры в атмосфере. Так как поглощение инфракрасного излучения в атмосфере происходит в молекулярных полосах, то зависимость коэффициента поглощения от частоты является очень сложной. Для простоты мы введём средний коэффициент поглощения и ему соответствующую оптическую глубину τ. Количество энергии, падающей на поверхность планеты от Солнца, обозначим через 𝐸₁. Это количество энергии в виде инфракрасного излучения переносится через атмосферу наружу. Будем считать, что в атмосфере осуществляется локальное термодинамическое равновесие. Тогда зависимость температуры 𝑇 от оптической глубины τ будет определяться формулой

𝑎𝑐

4

𝑇⁴

=

𝐸₁

1

2

+

3

4

τ

,

(21.7)

написанной по аналогии с формулой (4.16), полученной в приближении Эддингтона в теории фотосфер. Мы заменили лишь поток излучения в звёздной фотосфере 𝑛𝐹 на поток излучения в планетной атмосфере 𝐸₁.

Если оптическую толщину атмосферы обозначить через τ₁ то температура поверхности планеты будет равна

𝑇₁

=

4𝐸₁

𝑎𝑐

1

2

+

3

4

τ₁

⎤¼

.

(27.8)

Разумеется, формула (21.8) весьма груба и она лишь иллюстрирует действие «парникового эффекта». На самом деле при рассмотрении переноса излучения через атмосферу следует учитывать зависимость коэффициента поглощения от частоты, определяемую заданием химического состава и физических условий (т.е. температуры и плотности). Необходимо также принимать во внимание возможность конвективного переноса энергии в атмосфере.

На рис. 27 изображена схема парниковой модели атмосферы Венеры, причём стрелками указаны те области атмосферы, от которых идёт к наблюдателю излучение в разных участках спектра. От облаков идёт к нам диффузно-отражённое солнечное излучение в видимой части спектра и собственное инфракрасное излучение атмосферы. Радиоизлучение на миллиметровых волнах идёт от подоблачных слоёв атмосферы, а на сантиметровых волнах — от поверхности планеты.

Курс теоретической астрофизики - _29.jpg

Рис. 27

Парниковая модель атмосферы Венеры в общих чертах подтверждается наблюдательными данными, полученными при запусках космических аппаратов к этой планете (советских «Венер» и американских «Маринеров»). При таких запусках установлено, что температура поверхности планеты около 730 K, давление вблизи поверхности около 90 атм и основным компонентом атмосферы является углекислый газ (97%). Верхняя граница облачного слоя расположена на высоте около 70 км, а нижняя — на высоте примерно 50 км. Ниже аэрозоль присутствует в незначительных количествах. Оптическая толщина облаков в видимом участке спектра равна 30—50. Несмотря на это, освещённость поверхности составляет величину порядка 5% освещённости верхней границы атмосферы, что объясняется малой ролью истинного поглощения в атмосфере (т.е. малостью величины 1-λ). Так как альбедо поверхности невелико (примерно 0,1—0,2), то мы видим, что заметная часть падающего на Венеру излучения Солнца идёт на нагревание поверхности. Для объяснения этих данных, а также результатов различных наземных наблюдений разработан ряд вариантов парниковой модели (подробнее см. [10]).

4. Верхние слои атмосферы.

В земной атмосфере выше облаков находятся почти чисто газовые слои. Естественно считать, что так обстоит дело и в случае других планет, покрытых облаками (в частности, Венеры и Юпитера). Изучение газовых слоёв может производиться разными методами. Одним из них является поляриметрический метод, уже упоминавшийся ранее. При рассеянии на молекулах излучение становится поляризованным, причём при углах рассеяния, близких к 90°, степень поляризации близка к единице. Поэтому из сравнения наблюдённой поляризации света планеты с поляризацией, обусловленной рассеянием на молекулах, можно сделать заключение о роли газового слоя в рассеянии излучения. Таким путём найдено, что для Венеры оптическая толщина газового слоя в видимой части спектра очень невелика (не больше 0,03). Для Юпитера поляризационные исследования затруднены тем, что его угол фазы меняется лишь от 0 до 12°. Тем не менее удалось установить, что оптическая толщина газового слоя в полярных областях больше, чем на экваторе. Подробные результаты исследования планет поляриметрическим методом содержатся в статье Дольфюса [5].

Значительно более ценные результаты даёт спектроскопический метод изучения планетных атмосфер. Как уже говорилось, путём сравнения теоретических и наблюдённых эквивалентных ширин линий могут быть найдены концентрации молекул в атмосфере и её температура. Отметим также, что указанным путём можно определить и давление в атмосфере. Такая возможность связана с тем, что эквивалентная ширина линии зависит не только от концентрации рассматриваемых молекул, но и от концентрации всех частиц в атмосфере (т.е. от давления), так как столкновения частиц с молекулами влияют на коэффициент поглощения в линии. Определение давления делалось для атмосферы Венеры по полосам 𝙲𝙾₂. Однако не вполне ясно, к какому уровню атмосферы надо отнести полученные результаты. Сначала думали, что молекулярные полосы возникают лишь в надоблачном газовом слое, но они образуются и в облаках, где происходит истинное поглощение света в линии и рассеяние на крупных частицах. В таком случае определение оптических свойств надоблачного слоя спектроскопическим методом сильно усложняется.

Очень важные сведения о строении верхних слоёв планетных атмосфер можно получить также путём наблюдения покрытия звёзд планетами. При надвижении планеты на звезду происходит постепенное ослабление блеска звезды, вызванное прохождением её излучения через все более и более плотные слои планетной атмосферы. Очевидно, что по наблюдаемой кривой изменения блеска звезды можно найти зависимость плотности в атмосфере от высоты.

96
{"b":"635766","o":1}