Литмир - Электронная Библиотека
Содержание  
A
A

𝐻

ν

=

2ν²

𝑐²

𝑘

𝑇

ν

Ω

.

(18.4)

Так как Ω=π(𝑅/𝑟)² где 𝑅 — радиус Солнца и 𝑟 — расстояние от Солнца до Земли, то вместо (18.4) получаем

𝐻

ν

=

π

𝑇

𝑟

⎞²

2ν²

𝑐²

𝑘

𝑇

ν

.

(18.5)

Светимость же Солнца в частоте ν представляется в виде

𝐿

ν

=

4π²

𝑅²

2ν²

𝑐²

𝑘

𝑇

ν

.

(18.6)

Как показывают наблюдения, радиоизлучение Солнца состоит из двух компонент: 1) радиоизлучение спокойного Солнца (невозмущенная компонента) и 2) спорадическое радиоизлучение Солнца (возмущённая компонента). Первая компонента почти постоянна (точнее говоря, слабо меняется в течение цикла солнечной активности). Как увидим ниже, она является тепловым излучением короны и хромосферы. Вторая компонента испытывает как медленные, так и очень быстрые изменения с течением времени. Её происхождение связано с различными активными процессами на Солнце: пятнами, хромосферными вспышками и т.д.

Измерение потоков радиоизлучения Солнца приводит к тому результату, что для невозмущённой компоненты яркостная температура 𝑇ν оказывается порядка 10⁴ кельвинов в сантиметровом диапазоне и порядка 10⁶ кельвинов — в метровом. Что же касается возмущённой компоненты, то для неё в метровом диапазоне иногда получаются яркостные температуры порядка 10⁸—10⁹ кельвинов и больше. Иными словами, поток возмущённого радиоизлучения Солнца иногда в 100—1 000 и больше раз превосходит поток радиоизлучения спокойного Солнца.

В дальнейшем речь будет идти в основном о невозмущённой компоненте солнечного радиоизлучения, а возмущённая компонента будет рассмотрена весьма кратко. Подробное рассмотрение проблемы радиоизлучения Солнца содержится в уже упомянутых монографиях [2], [3], [7] и особенно в книге В. В. Железнякова [8]. Общая теория распространения радиоизлучения в плазме изложена в монографии В. Л. Гинзбурга [9].

2. Радиоизлучение спокойного Солнца.

Приступая к интерпретации наблюдательных данных о солнечном радиоизлучении, мы сначала ответим на вопрос, в каких слоях Солнца оно возникает. Для этого нам следует определить оптические глубины различных слоёв в области радиочастот. Очевидно, что излучение может доходить до наблюдателя лишь от тех слоёв, оптическая глубина которых не превосходит по порядку единицу.

Чтобы найти оптическую глубину τν, надо знать объёмный коэффициент поглощения αν. Как было выяснено в § 5, поглощение излучения в непрерывном спектре происходит при фотоионизациях и свободно-свободных переходах. Однако фотоионизации вызываются лишь теми квантами, энергия которых больше энергии ионизации (ℎν>χ𝑖), и поэтому кванты в области радиочастот, обладающие небольшой энергией, поглощаться при фотоионизациях не могут (они могли бы поглощаться при фотоионизациях с высоких дискретных уровней, но такие уровни в действительности не осуществляются). В то же время при свободно-свободных переходах могут поглощаться кванты любых частот, в том числе и очень малых. Именно при свободно-свободных переходах и происходит поглощение радиоизлучения.

Объёмный коэффициент поглощения, обусловленный свободно свободными переходами электрона в поле протона, даётся формулой (5.10).

Так как водород является самым распространённым элементом в атмосфере Солнца, то приближённо мы примем, что этой формулой определяется полный объёмный коэффициент поглощения, т.е.

α

ν

=

𝑛

𝑒

𝑛⁺

2⁴π²𝑒⁶𝑘𝑇𝑒

3√3 𝑐ℎ (2π𝑚𝑘𝑇𝑒/²

𝑔ν

ν³

,

(18.7)

где 𝑛⁺ и 𝑛𝑒 — концентрация протонов и свободных электронов соответственно, 𝑇𝑒 — температура электронного газа и 𝑔ν — множитель Гаунта (в области радиочастот — порядка 10).

Однако в формуле (18.7) не принято во внимание отрицательное поглощение, играющее очень большую роль для радиоизлучения. На основании сказанного в § 8, для учёта отрицательного поглощения следует ввести в правую часть формулы (18.7) множитель

1-

exp

-

ℎν

𝑘𝑇𝑒

Для свободно-свободных переходов множитель такого вида вводится при допущении максвелловского распределения свободных электронов по скоростям.

В области радиочастот величина ℎν/𝑘𝑇𝑒 очень мала (например, ℎν/𝑘𝑇𝑒≈10⁻⁸ при 𝑇𝑒≈10⁶ кельвинов и λ=100 см), вследствие чего указанный множитель можно заменить величиной ℎν/𝑘𝑇𝑒. Поэтому объёмный коэффициент поглощения в области радиочастот при учёте отрицательного поглощения записывается в виде

α

ν

=

𝑛

𝑒

𝑛⁺

2⁴π²𝑒⁶

3√3 𝑐 (2π𝑚𝑘𝑇𝑒/²

𝑔ν

ν²

.

(18.8)

Так как 𝑔ν очень слабо зависит от ν, то можно считать, что αν∼1/ν².

Пользуясь полученным выражением для αν, мы можем определить оптическую глубину любого места в солнечной атмосфере по формуле

τ

ν

=

𝑟

α

ν

𝑑𝑟

=

2⁴π²𝑒⁶

3√3 𝑐 (2π𝑚𝑘𝑇𝑒/²

𝑔ν

ν²

𝑟

𝑛⁺𝑛

𝑒

𝑑𝑟

,

(18.9)

где для простоты принято, что 𝑇𝑒=const. Для вычисления входящего в (18.9) интеграла надо знать зависимость 𝑛⁺ от 𝑟 (приближённо 𝑛⁺=𝑛⁺). Для короны эта зависимость даётся формулой (17.13). Результаты вычисления оптических глубин в короне для разных длин волн приведены в табл. 23, взятой из книги И. С. Шкловского [7].

Таблица 23

Оптические глубины в короне

для радиоизлучения

𝑟

𝑅

Длина волны

λ

в см

50

100

150

187

300

400

800

1200

1,04

0,183

0,73

1,65

2,58

6,6

11

,7

47

107

1,1

0,061

0,26

0,59

0,93

2,4

4

,2

17

38

1,2

0,017

0,068

0,154

0,24

0,62

1

,08

4

,4

10

1,4

0,004

0,015

0,035

0,053

0,14

0

,25

1

,0

2

,3

1,6

0,0006

79
{"b":"635766","o":1}