Качественный рост старших моделей AS/400е
Уже рассмотренные нами новые программные технологии позволят обеспечить значительный рост производительности и емкости AS/400. В то же время, цена этого роста будет гораздо ниже, чем в прошлом. Давайте остановимся на двух основных аппаратных направлениях развития, которые позволят значительно расширить возможности старших моделей и сократить стоимость аппаратуры для всех систем серии AS/400е.
Развитие старших моделей стало основным направлением наших работ в начале 90-х. Тогда многие наши крупные заказчики «уперлись в потолок» возможностей своих AS/400. Их требования к производительности и объемам системы превосходили то, что мы могли предоставить. Эти требования и подтолкнули нас к переходу на PowerPC. С появлением систем AS/400 на базе RISC-процессоров мы смогли на какое-то время удовлетворить потребности заказчиков в новых системах старшего уровня. Но спрос на еще большие объемы и производительность не уменьшился. Нашим ответом на растущие требования должны стать возможности моделей серии AS/400е. В этом разделе мы рассмотрим два метода, с помощью которых IBM планирует достичь намеченных высот производительности: одиночные системы и кластеры.
RISC-процессор и перспективы его развития
Я всегда считал, что у автомобиля не может быть слишком много лошадиных сил, а у компьютера — слишком мощного процессора.
Кажется, я же упоминал, что люблю управлять гоночными автомобилями? Даже машина, на которой я езжу каждый день, заключает в своем двигателе Northstar (имя, которое мне всегда нравилось) 300 лошадиных сил. Мне не часто требуется столь мощный двигатель, чтобы добраться до своего офиса в IBM, но как приятно иногда «пощекотать своих лошадок» и убедиться, что все они проснулись! Так же преданно, как и мощные машины, я люблю мощные компьютеры. В моем домашнем ПК два процессора Pentium Pro. Разница в моей привязанности к мощным автомобилям и мощным компьютерам — это разница между спортивным интересом и деловой необходимостью.
Требования бизнеса к обслуживающим его приложениям на протяжении многих лет постоянно стимулируют рост мощности процессоров. Именно поэтому в серии AS/400е мы увеличили мощность процессоров примерно в пять раз. Эта тенденция сохранится и в будущем, и мы создадим еще более мощные системы и серверы AS/400е.
Несколько лет назад производительность процессора для System/38 и ранних моделей AS/400 не считалась крайне важной. Мы шутили, что Pacific — кодовое название для System/38 — является сокращением от «Performance Ain't Critical if Function Is Complete»[ 83 ]. Мы сознательно жертвовали мощностью в пользу функциональности, зная, что, в конце концов, технологический прогресс приведет нас и к оптимальной производительности. Как показало время, такое решение было верным: сегодня у AS/400 есть и то, и другое.
К тому же ранние системы использовались для приложений интерактивной обработки, где производительность процессора менее важна, чем производительность ввода-вывода. В главе 10 мы рассмотрели, как на протяжении многих лет велась оптимизация AS/400 для достижения выдающейся производительности ввода-вывода.
Архитектура AS/400 также уменьшала потребность в высокопроизводительном процессоре. В главах 8 и 9 говорилось, что одноуровневая память и эффективная структура задач AS/400 делают ненужным выполнение ОС многих процессорных команд, необходимых для тех же самых приложений на других компьютерах. Также было отмечено, что благодаря постоянной одноуровневой памяти AS/400 выполняет меньше команд и меньше обращений к диску при работе с объектами. Если команду не нужно выполнять, то это вполне компенсирует недостаток производительности процессора.
По сравнению с интерактивными приложениями, большинство новых приложений для AS/400 требуют большей мощности процессора. Когда в начале 90-х наметился переход к клиент-серверным вычислениям, приложения AS/400 стали работать более интенсивно. Серверные модели были одним из способов обеспечения поддержки этой интенсивности. Другим способом стала технология PowerPC.
Технология PowerPC лежит в основе повышения производительности для версии 4. (Этот процессор, а также все поколения 64-разрядных процессоров, которые разрабатывались или разрабатываются в Рочестере, подробно описаны в главе 2.) Мы использовали первое и второе поколения RISC-процессоров PowerPC в AS/400 в 1994 и 1995 годах. Системы версии 4 оснащены процессорами PowerPC третьего и четвертого поколений.
Производительность одиночного процессора важна для ПК, где процессор обрабатывает все вычисления и операции ввода-вывода. В таких системах нужны процессоры с высокими тактовыми частотами и большими кэшами. Однако для многопользовательских систем оптимально сочетание нескольких процессоров. Если требуется разделение памяти, как в большинстве коммерческих приложений, то наиболее эффективна модель SMP.
В главе 2 мы говорили, что слабое место большинства современных систем SMP — интерфейс памяти. Без эффективной системы памяти высокопроизводительные процессоры в конфигурации SMP по большей части простаивают в ожидании доставки данных.
Я очень люблю систему Cray CS6400, в которой 64 процессора использовали общую память с помощью четырех шин памяти, а не одной. Этот суперкомпьютер стоимостью в 4 миллиона долларов, предназначавшийся, кстати, для деловых приложений, использовал процессоры SuperSparc, тактовая частота которых — всего лишь 60 или 85 МГц. Высочайшая производительность достигалась этим компьютером не за счет высокоскоростных процессоров, которые большую часть времени простаивают, но за счет передового интерфейса памяти, регулирующего доступ процессоров к памяти.
Суперкомпьютер ASCI Option Blue Pacific — совместная разработка IBM и Министерства энергетики США — достигает высокой производительности за счет другой новейшей подсистемы памяти. В главе 2 рассматривалась и эта сама подсистема, и то, как ее версия используется в AS/400 для обеспечения производительности масштабируемых 8-ми и 12-процессорных конфигураций SMP. Несмотря на достаточно скромные возможности процессоров Apache второго поколения, эта подсистема памяти позволила компьютерам серии AS/400е достичь производительности в несколько раз выше, чем у ранних систем, оснащенных высокопроизводительными процессорами первого поколения Muskie. 12-процессорные системы с процессорами Apache сейчас могут поспорить по этому поводу с самыми крупными мэйнфреймами.
Мы планируем продемонстрировать промышленную модель самого мощного в мире суперкомпьютера в декабре 1998 года. Он использует новую реализацию подсистемы памяти процессоров Apache, что позволяет эффективно применять высокоскоростные процессоры даже в больших конфигурациях SMP.
Процессоры PowerPC четвертого поколения используют новую реализацию подсистемы памяти для достижения супервысокой эффективности. Эти процессоры могут поддерживать 16-канальные конфигурации. Четвертое поколение 64-разрядных процессоров PowerPC имеет различные уровни производительности, от 250 МГц до, примерно, 800 МГц. Не стоит и говорить, что мы ожидаем значительный рост общей производительности систем в течение следующих нескольких лет.
Конечно, одной мощности процессора недостаточно для высокой производительности компьютера. Мы в Рочестере — сторонники сбалансированных систем. Возможности памяти, дисков и ввода-вывода будут возрастать так же быстро, как и процессора. В главе 12 я познакомлю Вас с тестами, используемыми для оценки сегодняшней и будущей производительности. Мы также сравним серии AS/400е с некоторыми другими компьютерами по этому параметру.
Для сбалансированного роста производительности мы предусматриваем также улучшение процедур резервного копирования, IPL и восстановления после сбоев. Наконец, чтобы защитить вложения наших заказчиков в аппаратуру, мы обеспечили поддержку всех только что обсуждавшихся расширений вновь разработанными корпусами серии AS/400е. Прирост аппаратной производительности достигается простой заменой платы процессора.