Литмир - Электронная Библиотека
Содержание  
A
A

  Понятие определённого интеграла распространяется на случай неограниченного промежутка интегрирования, а также на некоторые классы неограниченных функций. Такие обобщения называются несобственными интегралами .

  Выражения вида

Большая Советская Энциклопедия (ИН) - i-images-108437926.png

где функция f (x , a) непрерывна по x называются интегралами, зависящими от параметра. Они служат основным средством изучения многих специальных функций (см., например, Гамма-функция ).

  Неопределённый интеграл. Нахождение неопределённых интегралов, или интегрирование, есть операция, обратная дифференцированию. При дифференцировании данной функции ищется её производная. При интегрировании, наоборот, ищется первообразная (или примитивная) функция — такая функция, производная которой равна данной функции. Таким образом, функция F (x ) является первообразной для данной функции f (x ), если F' (x ) = f (x ) или, что то же самое, dF (x ) = f (x ) dx. Данная функция f (x ) может иметь различные первообразные, но все они отличаются друг от друга только постоянными слагаемыми. Поэтому все первообразные для f (x ) содержатся в выражении F (x ) + С , которое называют неопределённым интегралом от функции f (x ) и записывают

Большая Советская Энциклопедия (ИН) - i-images-142842262.png

  Определённый интеграл как функция верхнего предела интегрирования

Большая Советская Энциклопедия (ИН) - i-images-127055027.png

(«интеграл с переменным верхним пределом»), есть одна из первообразных подинтегральной функции. Это позволяет установить основную формулу И. и. (формулу Ньютона — Лейбница):

Большая Советская Энциклопедия (ИН) - i-images-112645388.png

выражающую численное значение определённого интеграла в виде разности значений какой-либо первообразной подинтегральной функции при верхнем и нижнем пределах интегрирования.

  Взаимно обратный характер операций интегрирования и дифференцирования выражается равенствами

Большая Советская Энциклопедия (ИН) - i-images-122680907.png

  Отсюда следует возможность получения из формул и правил дифференцирования соответствующих формул и правил интегрирования (см. табл., где C , m , a , k — постоянные и m ¹ —1, а > 0).

Таблица основных интегралов и правил интегрирования

Большая Советская Энциклопедия (ИН) - i-images-187923578.png

¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

Большая Советская Энциклопедия (ИН) - i-images-191652492.png

¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾

  Трудность И. и. по сравнению с дифференциальным исчислением заключается в том, что интегралы от элементарных функций не всегда выражаются через элементарные, могут не выражаться, как говорят, «в конечном виде». И. и. располагает лишь отдельными приёмами интегрирования в конечном виде, область применения каждого из которых ограничена (способы интегрирования излагаются в учебниках математического анализа: обширные таблицы интегралов приводятся во многих справочниках).

  К классу функций, интегралы от которых всегда выражаются в элементарных функциях, принадлежит множество всех рациональных функций

Большая Советская Энциклопедия (ИН) - i-images-142607130.png

где P (x ) и Q (x ) — многочлены. Многие функции, не являющиеся рациональными, также интегрируются в конечном виде, например функции, рационально зависящие от

Большая Советская Энциклопедия (ИН) - i-images-101192924.png

или же от x и рациональных степеней дроби

Большая Советская Энциклопедия (ИН) - i-images-115317107.png

В конечном виде интегрируются и многие трансцендентные функции, например рациональные функции синуса и косинуса. Функции, которые изображаются неопределёнными интегралами, не берущимися в конечном виде, представляют собой новые трансцендентные функции. Многие из них хорошо изучены (см., например, Интегральный логарифм , Интегральный синус и интегральный косинус , Интегральная показательная функция ).

  Понятие интеграла распространяется на функции многих действительных переменных (см. Кратный интеграл , Криволинейный интеграл , Поверхностный интеграл ), а также на функции комплексного переменного (см. Аналитические функции ) и вектор-функции (см. Векторное исчисление ).

  О расширении и обобщении понятия интеграла см. ст. Интеграл .

  Историческая справка. Возникновение задач И. и. связано с нахождением площадей и объёмов. Ряд задач такого рода был решен математиками Древней Греции. Античная математика предвосхитила идеи И. и. в значительно большей степени, чем дифференциального исчисления. Большую роль при решении таких задач играл исчерпывания метод , созданный Евдоксом Книдским и широко применявшийся Архимедом . Однако Архимед не выделил общего содержания интеграционных приёмов и понятия об интеграле, а тем более не создал алгоритма И. и. Учёные Среднего и Ближнего Востока в 9—15 вв. изучали и переводили труды Архимеда на общедоступный в их среде арабский язык, но существенно новых результатов в И. и. они не получили. Деятельность европейских учёных в это время была ещё более скромной. Лишь в 16 и 17 вв. развитие естественных наук поставило перед математикой Европы ряд новых задач, в частности задачи на нахождения квадратур, кубатур и определение центров тяжести. Труды Архимеда, впервые изданные в 1544 (на латинском и греческом языках), стали привлекать широкое внимание, и их изучение явилось одним из важнейших отправных пунктов дальнейшего развития И. и. Античный «неделимых» метод был возрожден И. Кеплером . В более общей форме идеи этого метода были развиты Б. Кавальери , Э. Торричелли , Дж. Валлисом , Б. Паскалем . Методом «неделимых» был решен ряд геометрических и механических задач. К этому же времени относятся опубликованные позднее работы П. Ферма по квадрированию парабол n -й степени, а затем — работы Х. Гюйгенса по спрямлению кривых.

  В итоге этих исследований выявилась общность приёмов интегрирования при решении внешне несходных задач геометрии и механики, приводившихся к квадратурам как к геометрическому эквиваленту определённого интеграла. Заключительным звеном в цепи открытий этого периода было установление взаимно обратной связи между задачами на проведение касательной и на квадратуры, т. е. между дифференцированием и интегрированием. Основные понятия и алгоритм И. и. были созданы независимо друг от друга И. Ньютоном и Г. Лейбницем . Последнему принадлежит термин «интегральное исчисление» и обозначение интеграла òydx.

  При этом в работах Ньютона основную роль играло понятие неопределённого интеграла (флюенты, см. Флюксий исчисление ), тогда как Лейбниц исходил из понятия определённого интеграла. Дальнейшее развитие И. и. в 18 в. связано с именами И. Бернулли и особенно Л. Эйлера . В начале 19 в. И. и. вместе с дифференциальным исчислением было перестроено О. Коши на основе теории пределов. В развитии И. и. в 19 в. приняли участие русские математики М. В. Остроградский , В. Я. Буняковский , П. Л. Чебышев . В конце 19 — начале 20 вв. развитие теории множеств и теории функций действительного переменного привело к углублению и обобщению основных понятий И. и. (Б. Риман , А. Лебег и др.).

147
{"b":"106077","o":1}