Оказалось, что лучше всего получать лейкоциты из серо-зеленых, пропитанных гноем бинтов с ран хирургических пациентов. В середине XIX в. хирурги считали, что гной как побочный продукт заживления операционной раны имеет доброкачественный эффект и чем больше образуется гноя, тем выше шансы на выздоровление. Как теперь известно, нагноение чаще всего возникает из-за нечистых рук и инструментов, а избыточное выделение гноя приводит к послеоперационной инфекции. Нередко из-за «доброкачественного» гноя инфекция распространялась с кровотоком по всему организму и развивалось смертельно опасное состояние – сепсис. Как часто случается в научном поиске, Мишеру сыграло на руку появление новой технологии, разработанной другим исследователем, а именно Виктором фон Брунсом, возглавлявшим хирургическую клинику Тюбингенского университета. Профессор фон Брунс придумал хлопковый тканый материал с высокими абсорбирующими свойствами, которому дал название «ватный хлопок» (теперь он называется марлей). Вместе с послеоперационными инфекциями этот новый перевязочный материал, впитывающий жидкости как губка, ежедневно обеспечивал Мишера гноем{35}. Со временем Мишер нашел наилучший способ отделять нежные лейкоциты от жидкой части гноя из перевязочного материала, не повреждая и не убивая их, что было непростой задачей. К счастью, с его, как говорится, легкой руки появился метод, который позволил получить в осажденном виде ранее не описанное вещество с высоким содержанием фосфора, проявлявшее свойства кислоты. Мишер установил, что это вещество содержится только в ядре клетки, и назвал его нуклеином (от латинского nucleus – «ядро»). В наше время обнаруженное Мишером вещество называется дезоксирибонуклеиновой кислотой, сокращенно ДНК{36}. Зачастую ошибочно говорят, будто Уотсон и Крик открыли ДНК. В действительности они открыли молекулярную структуру вещества, которое Фридрих Мишер выделил и охарактеризовал химически на восемьдесят четыре года раньше – в 1869 г. В 1871 г. Мишер перебрался из Тюбингена в Лейпциг, где стал работать под руководством прославленного физиолога Карла Людвига{37}. В том же году он подготовил статью о своих исследованиях нуклеина, и после тщательной проверки результатов, отличавшихся высокой воспроизводимостью, Феликс Гоппе-Зейлер согласился опубликовать ее в престижном журнале Medicinisch-chemische Untersuchungen, редактором которого являлся. В редакционном предисловии к статье Мишера Гоппе-Зейлер авторитетно подтвердил научную новизну открытия нуклеина{38}. В следующем году Мишер вернулся в родной Базель проходить хабилитацию – читать лекции и готовиться к занятию академической должности согласно процедуре, принятой для молодых врачей Германии, Австрии и Швейцарии в XIX в.{39} В возрасте 28 лет он получил предложение возглавить кафедру физиологии и занять должность профессора в Базельском университете. Поскольку в этом учебном заведении высокие посты принадлежали его отцу и дяде, коллеги-завистники безосновательно жаловались на кумовство. Мишер, став блестящим исследователем, доказал, что они ошибаются. Поскольку Базель раскинулся на берегах Рейна, одной из важнейших отраслей хозяйства в городе была ловля лосося. А сперматозоиды лосося легко выделить и очистить даже теми методами, которые были известны во времена Мишера. Кроме того, эти клетки имеют очень крупное ядро, так что из них получается много нуклеина, пригодного для исследований. И Мишер взялся за рыбалку, чтобы обеспечить себе неиссякаемый источник молок лосося. Химический анализ тогда был очень трудоемким и долгим, к тому же поначалу образцы нуклеина бывали загрязнены белками и входящей в их состав серой, но в конце концов Мишер установил, что нуклеин состоит из углерода, фосфора, водорода, кислорода и азота.
В 1874 г. Мишер опубликовал сообщение о том, что ядра клеток различных видов позвоночных имеют много общего, но и несколько различаются. В частности, в этой статье есть сформулированное довольно сдержанно, но по сути сенсационное предположение, что если конкретной причиной оплодотворения является индивидуальное вещество, то следует рассматривать в первую очередь нуклеин{40}. Однако Мишер не мог объяснить, каким образом столь сложным процессом, как репродукция, может управлять единственное химическое соединение с таким ограниченным разнообразием, и сделал вывод, что, как он выразился, «не существует конкретного вещества, определяющего оплодотворение»{41}. Как и Грегор Мендель, Мишер был вынужден заниматься административными делами, теряя на них время, которое лучше было бы посвятить размышлениям. Он умер от туберкулеза в 1895 г. на 52-м году жизни. В его честь назван Институт медико-биологических исследований Базельского университета. Однако за пределами Базеля лишь немногие помнят имя и труды Мишера. Прошло больше полувека, прежде чем удалось выяснить функции и роль ДНК. К сожалению, до этого в академических кругах понимание природы наследственности было далеко от истины. [3] До двойной спирали С конца 1880-х гг. и особенно в первые три десятилетия XX в. многие белые мужчины-англосаксы из высших слоев общества (а также их жены и дети) весьма беспокоились о будущем генофонде своего народа{42}. Их страхи опирались на псевдонаучную схему, предложенную в 1883 г. британским натуралистом Фрэнсисом Гальтоном, который приходился двоюродным братом Чарльзу Дарвину. Гальтон предложил концепцию, названную им евгеникой (от греческого корня εύγενής – «хорошего рода, благородный от рождения»), и план улучшения здоровья населения, заключавшийся в том, чтобы предоставить более годным расам больше возможностей быстро достичь численного превосходства над менее годными{43}. Евгеника со скоростью лесного пожара распространилась среди белых интеллектуалов Европы, проникнув и в Америку. В Соединенных Штатах Америки в 1900–1920 гг., когда царил прогрессивизм, поколение реформаторов стремилось противостоять актуальным социальным проблемам, в том числе положению городской бедноты, неграмотности, ассимиляции огромного множества мигрантов, прибывающих на берега Северо-Американского континента, а также демографическим проблемам, включая эпидемии, высокую детскую смертность и прирост населения. Эти реформаторы часто прибегали к ошибочным положениям евгеники применительно к людям, которых считали нежелательными: к умственно неполноценным (врачи и психологи обозначали их терминами «имбецилы», «идиоты» и «дебилы»), слепым, глухим, психически больным, инвалидам, эпилептикам, сиротам, матерям-одиночкам, представителям коренных народов Америки, афроамериканцам, иммигрантам, обитателям городских трущоб, неимущим жителям Аппалачей и ко множеству других «аутсайдеров». По утверждению прогрессивистов, все эти низшие группы населения представляли экзистенциальную угрозу экономическому, политическому и нравственному здоровью американского общества. Евгеника дала американским властным структурам авторитетную наукообразную основу для расовых предрассудков в отношении тех, кого они считали опасными. Решение проблем нашли в том, чтобы изолировать нежелательных лиц, отгораживаться от них и не позволять им загрязнять господствующую «высшую расу» – урожденных белых американцев{44}. «Высших» с точки зрения евгеники, а именно белых англосаксов-протестантов, поощряли к размножению – этот подход получил название позитивная евгеника. Людям, которые считались носителями худших, «низших» генов, то есть практически всем остальным, активно препятствовали в продолжении рода мерами негативной евгеники, например государственными законами о стерилизации умственно отсталых, ограничениями на заключение межрасовых и других смешанных браков, обязательным анализом крови на венерические заболевания для получения разрешения на брак, методами контроля рождаемости и строгими нормами права на усыновление. К еще более угрожающей социальной политике вели призывы местных уроженцев к ограничению въезда иммигрантов, рассматриваемых ими как неспособных к ассимиляции. Используя евгеническую пропаганду для создания доказательной базы, Конгресс США принял в 1924 г. закон, ограничивающий въезд иностранцев на сорок с лишним лет. Эта политика обрекла на смерть миллионы евреев в Германии в Восточной Европе, лишив их возможности спастись от гитлеровских зверств путем эмиграции в Соединенные Штаты{45}. вернуться Переплетение марлевой ткани отличается тем, что уточные нити расположены попарно и пересекаются до и после каждой нити основы, надежно удерживая уток на месте. Интересно, что эта структура напоминает двойную спираль. A. Klose, "Victor von Bruns und die sterile Verbandswatte," ("Victor Bruns and the Sterile Cotton Wool"), Ausstellungskatalog des Stadtsmuseums Tübinger Katalogue 77 (2007): 36–46; D. J. Haubens, Victor von Bruns (1812–1883) and his contributions to plastic and reconstructive surgery," Plastic and Reconstructive Surgery 75, no. 1 (January 1985): 120–27. вернуться Ralf Dahm, "Discovering DNA: Friedrich Miescher and the Early Years of Nucleic Acid Research," Human Genetics 122 (2008): 565–81; Ralf Dahm, "Friedrich Miescher and the Discovery of DNA," Developmental Biology 278, no. 2 (2005): 274–88; Ralf Dahm, "The Molecule from the Castle Kitchen," Max Planck Research, 2004, 50–55; Ulf Lagerkvist, DNA Pioneers and Their Legacy (New Haven: Yale University Press, 1998), 35–67. вернуться Horace W. Davenport, "Physiology, 1850–1923: The View from Michigan," Physiologist 25, suppl. 1 (1982): 1–100. вернуться Friedrich Miescher, "Ueber die chemische Zusammensetzung der Eiterzellen" (On the Chemical Composition of Pus Cells), Medicinisch-chemische Untersuchungen 4 (1871): 441–60; Felix Hoppe-Seyler, "Ueber die chemische Zusammensetzung des Eiter" (On the Chemical Composition of Pus), Medicinisch-chemische Untersuchungen 4 (1871): 486–501. вернуться S. B. Weineck, D. Koelblinger, and T. Kiesslich, "Medizinische Habilitation im deutschsprachigen Raum: Quantitative Untersuchung zu Inhalt und Ausgestaltung der Habilitationsrichtlinien" (Medical Habilitation in German-Speaking Countries: Quantitative Assessment of Content and Elaboration of Habilitation Guidelines), Der Chirurg 86, no. 4 (April 2015): 355–65; Theodor Billroth, The Medical Sciences in the German Universities: A Study in the History of Civilization (New York: Macmillan, 1924). вернуться Freidrich Miescher, "Die Spermatozoen einiger Wirbeltiere: Ein Beitrag zur Histochemie" (The Spermatazoa of Some Vertebrates: A Contribution to Histochemistry), Verhandlungen der naturforschenden Gesellschaft in Basel 6 (1874): 138–208; Dahm, "Discovering DNA"; Ulf Lagerkvist, DNA Pioneers and Their Legacy (New Haven: Yale University Press, 1998), 35–67. вернуться Описание истории евгеники взято из одной из моих книг, а именно: Howard Markel, The Kelloggs: The Battling Brothers of Battle Creek (New York: Pantheon, 2017), 298–321. вернуться Гальтон также противопоставлял воспитание природе. Он и Чарльз Дарвин приходятся внуками английскому врачу, натуралисту, изобретателю и поэту Эразму Дарвину. См.: Francis Galton, Inquiries into Human Faculty and its Development (London: Macmillan, 1883), 17, 24–25, 44; Francis Galton, Hereditary Genius: An Inquiry into its Laws and Consequences (London: Macmillan, 1869); Francis Galton, "On Men of Science: Their Nature and Their Nurture," Proceedings of the Royal Institution of Great Britain 7 (1874): 227–36. вернуться Howard Markel, Quarantine: East European Jewish Immigrants and the New York City Epidemics of 1892 (Baltimore: Johns Hopkins University Press, 1997), 179–82; Howard Markel, When Germs Travel: Six Major Epidemics That Invaded America Since 1900 and the Fears They Unleashed (New York: Pantheon, 2004), 34–36; Kenneth M. Ludmerer, Genetics and American Society: A Historical Appraisal (Baltimore: Johns Hopkins University Press, 1972), 87–119. вернуться Государственный закон США № 68–139, принятый 68-м Конгрессом США; John Higham, Strangers in the Land: Patterns of American Nativism, 1860–1925 (New York: Atheneum, 1963), 152; Barbara M. Solomon, Ancestors and Immigrants: A Changing New England Tradition (Cambridge, MA: Harvard University Press, 1956); Markel, Quarantine, 1–12, 66–67, 75–98, 133–52, 163–78, 181–85; Markel, When Germs Travel, 9–10, 35–36, 56, 87–89, 96–97, 102–3. |