Литмир - Электронная Библиотека
Содержание  
A
A

здесь лагранжиан ℒ0 определен формулой (1.7), a ta = λa/2, где λa — матрицы Гелл-Манна. Последние генерируют фундаментальное представление группы SUc(3) и удовлетворяют коммутационным соотношениям 2).

2 Теоретико-групповые соотношения приведены в приложении В. Цветовые индексы мы записываем произвольно в виде верхних или нижних индексов: ƒaЬс = ƒaЬс , tika = taik и т.д.

[

t

a

,t

b

]

=

i

 

c

 ƒ

abc

t

c

(1.10)

Такой цветовой и векторный характер глюонов имеет еще и то преимущество, что он позволяет объяснить расщепление масс резонанса Δ33 и нуклонов [89].

Чтобы продвинуться дальше, нужно понять, что в неабелевой калибровочной теории с безмассовыми векторными полями (предложенной Янгом и Миллсом [276]) имеются скрытые инфракрасные сингулярности, которые могут препятствовать появлению свободных кварков и глюонов. Таким образом, можно,наконец,согласовать условия (1.1) и (1.4). Свободные кварки не наблюдаются потому, что они не могут расходиться на большие расстояния вследствие взаимодействия, а не из-за большой массы. Это так называемая гипотеза конфайнмента (удержания). Модифицируем лагранжиан (1.9), введя в него член, описывающий глюонные поля:

QCD

 =

1

- ¼

 

a

G

μν

(x)G

(x) ,

a

aμν

(1.11)

G

μν

 = ∂

μ

B

ν

 - ∂

ν

B

μ

 +

 ƒ

B

μ

B

ν

 .

a

a

a

abc

b

c

Это дает одно дополнительное преимущество. Во всех неабелевых калибровочных теориях константа связи g автоматически получается универсальной. Выражение (1.11) представляет собой обычный лагранжиан КХД, с которого начнется изложение в следующей главе.

До сих пор все построения были в какой-то мере шаткими. Они состояли из набора предположений, достигших своего полного выражения в формуле (1.11), каждое из которых уводило нас все дальше от реального мира (пионов, протонов и т.д.) в воображаемую область (кварков и глюонов) с набором предсказаний, едва ли численно превосходящим количество предположений. Однако ситуация радикально изменилась в начале семидесятых годов. В это время т’Хофт (неопубликованная работа), Политцер [218] и независимо от них Гросс и Вильчек [160 — 162] доказали, что в теориях с лагранжианом типа (1.11) эффективная константа связи на малых расстояниях стремится к нулю (асимптотическая свобода), а на больших растет. Таким образом, они одновременно объяснили успехи алгебры токов и партонной модели, а также доказали возможность возникновения конфайнмента. Кроме того, оказалось возможным вычислить поправки к расчетам, проведенным в приближении свободных кварков. Результаты, учитывающие такие поправки, систематически согласуются с экспериментальными данными в пределах точности вычислений (и самих экспериментальных данных). В общем весьма вероятно, что КХД адекватно описывает процессы, происходящие при сильных взаимодействиях частиц 2a).

2a Скептическая точка зрения содержится в работе [220].

Другим важным, свойством КХД, которое, пожалуй, недостаточно подчеркивается при изложении хромодинамики, является локальный характер КХД как теории поля, что приводит (по крайней мере, если конфайнмент действительно имеет место) к локальным наблюдаемым. Точнее картина такова. Поля, являющиеся точными решениями уравнений движения, соответствующих лагранжиану (1.11), определены в гильбертовом пространстве ΧQCD, состоящем из кварковых и глюонных векторов состояний, и строятся, например, по теории возмущений. Кварки и глюоны представлены локальными полями q(x) и В(х). Если гипотеза конфайнмента справедлива, то существует подпространство ΧPh, которое содержит физические состояния. Иными словами, если точно решить уравнения теории, то сохранятся только синглетные по цвету операторы. К ним относятся токи типа

∑qi γμ (1 ± γ5) q'i ,

и другие составные операторы: операторы для π-мезона или для протона

∑qi γ5di , ∑εijkuiujdk

и т.д. Дело в том, что эти операторы локальны, хотя они и составные; если модель верна, то наблюдаемые операторы в физическом гильбертовом пространстве ΧPh тоже локальны. Это существенно при выводе 2b) всех стандартных результатов "старомодной" адронной физики — дисперсионных соотношений при фиксированном t, ограничений типа фруассаровского предела и т.д., которые, будучи проверены экспериментально, привели к впечатляющим успехам.

2b См. работы [44, 111], в которых можно найти ссылки на соответствующую литературу.

Отметим еще одно преимущество КХД хотя оно и носит более умозрительный характер, чем упомянутые выше. КХД допускает естественное обобщение до теории Великого объединения. Поскольку SUc(3) — более широкая группа, чем стандартная электрослабая группа SU(2) х U(l), при некотором масштабе энергий все константы связи могут стать равными по величине. Пока этот масштаб энергий (1014 ГэВ) намного выше экспериментальных возможностей, и предсказания моделей Великого объединения не противоречат существующим экспериментальным результатам.

§ 2. Теория возмущений, S-матрица и функции Грина; теорема Вика

В этом параграфе очень кратко рассматриваются основные вопросы релятивистской теории поля. Конечно, изложить теорию поля сколько-нибудь детально в столь малом объеме невозможно. Поэтому настоящий параграф служит главным образом для того, чтобы ввести необходимые обозначения и наметить в общих чертах круг вопросов, знакомство с которыми необходимо для понимания материала, излагаемого ниже. Подробное изложение теории квантованных полей содержится, например, в книгах [40, 45, 172].

Теория поля определяется заданием соответствующего лагранжиана. Если Φi - поля, фигурирующие в теории, то лагранжиан является функцией от полей Φi и их пространственно-временных производных ∂Φi. Лагранжиан ℒ (в действительности ℒ представляет собой плотность лагранжевой функции) принято разбивать на два слагаемых ℒ0 и ℒint; при этом член ℒ0 описывает динамику свободных полей (он получается из лагранжиана ℒ, если принять все взаимодействия равными нулю), а член ℒint который определяется как разность ℒint = ℒ - ℒ0 , описывает взаимодействия между полями. Например, в квантовой хромодинамике полный лагранжиан выражается в виде (1.11), а лагранжиан свободных полей записывается в следующем виде:

0

=

q

(x)(i

 -

m

q

)q(x)

-

¼

4
{"b":"570039","o":1}