Литмир - Электронная Библиотека
A
A

Мир просто есть. Рассел — один из тех математиков, которые пришли к фундаментальным противоречиям в науке уже в начале XX века. И расселовское разрешение этих парадоксов, которые в конечном счете привели к созданию современной логики, не является до конца убедительным. В парадоксах Рассела математика пришла к противоречию в самых своих основаниях, но она от этих оснований не отказалась. Иван точно так же не отказывается от своей аксиоматики, несмотря на явное противоречие, им же продемонстрированное с последней убедительностью. Математика второй половины XIX столетия подошла к подробному и полному обоснованию и строгому доказательству своих собственных основ. И одним из главных прорывов на этом пути стала теория множеств Георга Кантора, о которой великий математик Давид Гильберт сказал, что эта теория — одно из высочайших достижений человечества. Но именно формализация бесконеч­ности, предпринятая Кантором, его теория множеств и понятие трансфинитного числа обнажили множество парадоксов. Позитивизм, который тоже решил «остать­ся при факте», актуальной бесконечности, чреватой парадоксом, не принял.

 

3. Великий инквизитор

Когда мы исследуем природу при помощи естественных наук, мы всегда исходим из предположения, что мир существует и единственен. Из этого, в частности, следует, что мир в одной точке пространства обладает одной геометрией (и любая другая геометрия будет гипотетической). В современной науке возникают теории, согласно которым эта геометрия может зависеть от масштаба. Например, на расстояниях порядка планковской длины (10-33 см) геометрия пространства может быть существенно отлична от глобальной геометрии макромира. На малых расстояниях метрика не определяется — она флуктуирует, и пространство может выглядеть как пространственно-временная пена, по выражению американского физика Дж. Уилера. Но даже если метрика зависит от масштаба, все-таки она одна и та же для данной точки пространства и для одних и тех же условий наблюдения. Эта единственность — основополагающая аксиома научного познания. Мы хотим знать, как устроен мир, потому что знаем, что каким-то единственным образом он обязательно устроен и его устройство доступно наблюдению и, следовательно, познанию, поэтому картина мира однозначна и опре­делима.

Но естественно-научный взгляд на мир не является единственным. Как только мы переходим к другим методам познания — например, к искусству, закон существования и единственности уже не выполняется. Искусство может относиться к одному и тому же элементу мира по-разному и может видеть разное. И все описания могут быть достоверными. Эстетическое отношение к миру принципиально многозначно, и существует неограниченно много точек зрения различных наблюдателей, и все они равноправны и верны.

В науке мир существует, и его картина единственная, в искусстве описываемый мир может объективно не существовать, то есть не иметь другого, кроме самого произведения искусства, выражения, и этот мир принципиально не единственен и многозначен.

Каково положение дел в этике? Именно этот вопрос интересует Ивана Карамазова. Во-первых, он показывает, что для него мир не существует или в том виде, в котором мироздание дано восприятию, оно существованья недостойно. Для того чтобы мир имел право на существованье, он должен быть устроен справедливо. Но в нем нет имманентных (а другие Ивана не устраивают) законов справедливости. Из этого немедленно следует заповедь этического релятивизма «Все позволено». Впрочем, лучше назвать это не заповедью, а именно аксиомой. Заповедь — это ограничение, «аксиома» происходит от греческого слова axios — «ценность», а «Все позволено» — это и есть единственная ценность в мире, существование которого определяется этиче­ским релятивизмом. Припасть к кубку и пить до тридцати лет или даже до семидесяти, чтобы потом оторваться и обрести за гробом только смерть. Ивану такого рода этический релятивизм не очень нравится, но он согласен остаться при факте: мир либо не существует, либо его существование сводится к несвязанному набору утверждений — он лишен внутреннего смысла, лишен совести, абсурден. Исходя из той же аксиоматики, что и Иван, к точно таким же выводам пришел Альбер Камю, например, в «Мифе о Сизифе».

Каково отношение математики к миру с точки зрения его существова­ния и единственности объекта изучения? Кант, вынося математику за скобки эмпирических (экспериментальных, частных) знаний, придал ей особый статус — науки об априорных «в строжайшем смысле всеобщих» знаниях. Эта свобода от эмпирики поставила математику в совершенно особое положение. Ее утверждения не всегда можно и не обязательно нужно проверять экспериментом. Ее утверждения получают статус истинности исходя из внутреннего обоснования. Это привело к тому, что в математике стали развиваться и конкурировать различные языки описания одних и тех же объектов, и если в начале XIX века еще обязательно делались отсылки к реальной природе, то очень скоро такие ссылки стали необязательными — достаточным подтверждением теории стала рассматриваться ее применимость в другой, желательно удаленной области той же математики. Например, самым убедительным подтверждением геометрии Лобачевского стало применение ее в теории автоморфных функций Анри Пуанкаре в 1882 году. То есть математика обосновывает себя в том числе и собственной целостностью, и единством идей. Но при этом она свободно экспериментирует с языком и выстраивает различные модели. Все-таки главное — это внутренняя непротиворечивость, а насколько утверждения содержательны — это вопрос второй.

Иван идет именно по пути математического рассуждения, выстраивая свою модель идеального мира — того мира, который может существовать. То есть в нем есть внутренний смысл (содержание) и он согласован и непротиворечив. Это — модель, которую формулирует великий инквизитор.

Для того чтобы мир существовал и в нем мог существовать человек, необходимы те же этические постулаты, что и в научной картине мира: этиче­ская форма бытия должна существовать и должна быть единственной. В Поэме о великом инквизиторе Иван исследует вариант «двойной морали». То есть «мирного» сосуществования двух аксиоматик внутри одного бытия. Эта форма необходима, потому что человечество не готово (да и не будет ни­когда готово) принять ту трансцендентную свободу, которая ей дана в христианстве. Поэтому модель «двойной морали» является наименьшим злом — при любом другом варианте человечество просто себя уничтожит. Людей необходимо защищать и от самих себя, и от свободы, и неизвестно, что для них страшнее.

Иван строит рабочую модель, следуя рациональной квазиматематической схеме, а вот обосновывает и доказывает ее именно средствами искусства — он сочиняет поэму. Для него математика и искусство выполняют роль экспериментального поля, на котором он исследует этические модели. Математика обладает внутренней непротиворечивостью и всеобщностью. Искусство обладает образной убедительностью. Владимир Успенский, анализируя аксиоматику натурального ряда и перечисляя возникающие трудности, приходит к любопытному выводу: «…термин „доказательство” — один из самых главных в математике — не имеет точного определения. А приблизительное его определение таково: доказательство — это убедительное рассуждение, убеждающее нас настолько, что с его помощью мы способны убеждать других» («Семь размышлений на темы философии математики»)14 . Замечу, что речь идет именно о математической логике, то есть о самой строгой части математики. Иван использует «убедительную демонстрацию» в тех же целях — он доказывает свое этическое построение.

И Спиноза, и Декарт, и Лейбниц, и Шеллинг предпринимали попытки сведения философского рассуждения к математической форме. Можно вспомнить попытки выработки универсального языка — алгебра Декарта — и попытки применения этого языка к философии: например, теоремы «Этики» Спинозы или «Философия искусства» Шеллинга. Они всегда выглядят не слишком убедительно. Сама по себе математизированная форма не дает еще права на утверждение от имени математики и опоры на нее. По существу все утверждения доказываются вполне философски. Это связано в первую очередь с тем, что объекты, которыми оперируют философы, — содержательны. Их описание не сведено к чистой форме, что в математике обязательно — поскольку математическое доказательство корректно и обоснованно только для формальных объектов. А если в доказательство включается содержательная интерпретация, это сразу приводит к парадоксу. Как, например, в вы­сказывании «Я лгу». Если мы попытаемся приписать этому высказыванию значение «истина» или «ложь» и при этом не абстрагируемся от самого говорящего и кроме формальной ложности включим в рассмотрение содержательную — то есть выраженную не в самом высказывании, а выраженную вы­сказывающим утверждение, — мы сразу попадем в круг парадокса. Искусство (в отличие от философии) к математике никогда не прибегало. (За единственным, может быть, исключением — рисунков Маурица Эшера.) Поскольку как раз искусство, в точности так же, как и математика, оперирует формальным в объекте — то есть только тем, что есть в высказывании, только тем, что оговорено в тексте или условии. Ничего другого читатель, вообще говоря, не знает. Если он и домысливает нечто содержательное — оно уже за пределами текста, и автор за это ответственности не несет. Иван использует эстетическое доказательство этической теоремы. Он проводит формальную демонстрацию (не доказательство, конечно, а «показательство»). И эта демонстрация оказывается предельно убедительной.

58
{"b":"314874","o":1}