Это подводит нас к необходимости внедрения подхода, который пока еще не стал, но должен стать привычным. В процесс разработки анализа должно входить тестирование сделанных предположений. Для этого можно использовать дисциплину, обычно используемую в инжиниринге, под названием «анализ чувствительности»{66}.
Любой аналитический процесс опирается на конкретные предположения. Это могут быть предположения о темпах роста продаж, увеличении на рынке доли конкурента или будущих затратах на сырье. Результат аналитического процесса окажется неправильным, если неточны исходные предположения. Однако по мере того как становятся известны фактические значения, оказывается, что они отличаются от предполагаемых (в лучшем случае ненамного). Важнейший вопрос: если истинные значения в той или иной степени отклоняются от наших предположений, как это влияет на результаты анализа?
Например, сотрудники могут расходиться во мнениях о том, каким будет уровень инфляции – 3, 4 или 5 %. Здесь им на помощь придет анализ чувствительности, который позволяет показать, как изменение темпов инфляции повлияет на результаты анализа. Если независимо от того, чей прогноз окажется точнее, результаты анализа приведут к одному и тому же ответу, тогда сотрудникам не придется приводить свои прогнозы к единому показателю. Достаточно определить вероятный диапазон, скажем от 3 до 5 %, поскольку при любом из этих значений анализ приведет к одинаковому решению.
Впервые я столкнулся с такой необходимостью при разработке моделей комплексного маркетинга, которые включали данные телерекламы. Мало того, что последние были предельно обобщены, так нам к тому же нужно было сделать множество предположений в отношении этих данных, чтобы подготовить их для включения в наши модели. Например, каким будет темп затухания впечатлений от рекламы? Темп затухания – очень простая концепция. Телереклама способна повысить продажи. Однако люди действуют под влиянием рекламы, т. е. активно покупают рекламируемый товар в магазине или онлайн, всего в течение нескольких дней. При первых показах телерекламы ее влияние на покупательское поведение максимально, а затем это влияние постепенно снижается. Такое сокращение и называется темпом затухания, оказывающим заметное влияние на результаты. На рис. 7.3 показаны примеры темпа затухания.
В свое время я получил рекомендацию, которой до сих пор следуют многие специалисты-аналитики: если выдаваемые моделью оценки параметров являются статистически значимыми и модель обладает мощной объяснительной силой, значит, предположения насчет темпа затухания верны и модель является работоспособной. Но, следуя такому подходу, я столкнулся с серьезной проблемой.
Однажды я создал хорошую модель с использованием стандартного темпа затухания. Однако мне пришло в голову посмотреть, что будет, если я изменю свои предположения насчет темпа затухания и запущу модель заново. Я был поражен, когда получил по-прежнему статистически значимые оценки параметров, а у модели по-прежнему доставало объяснительной силы. Но при этом новые оценки параметров расходились с предыдущими оценками больше, чем допускали пределы ошибки. Стало понятно, что наличия хорошей модели и статистически значимых параметров было недостаточно для доказательства правильности исходных предположений. И, мало того, мои предположения о темпе затухания влияли на результаты больше, чем сама модель. Мы с моей командой приложили массу усилий, чтобы окончательно определить максимально точные, на наш взгляд, предположения. Тем не менее мне и по сию пору становится не по себе от мысли о том, что предположения способны настолько радикально повлиять на результаты анализа.
Предположения увеличивают риски; оцените риски
При создании аналитического процесса делается много предположений, причем вероятность того, что все они будут абсолютно точными, крайне низка. Полезно оценивать, как изменяются результаты, по мере того как варьируются фактические значения под влиянием предположений в правдоподобном диапазоне. Это позволяет лучше понять сопряженные с анализом риски.
Далеко не всегда все разумные предположения будут приводить к одинаковому ответу. В некоторых ситуациях один набор разумных предположений даст положительный результат, тогда как другой набор – отрицательный. В таких случаях необходимо прийти к согласию относительно заключительного предположения и оценить риски, связанные с возможной ошибкой. Когда разные предположения ведут к разным ответам, разумно использовать для подстраховки наиболее консервативные предположения. Анализ чувствительности для оценки влияния предположений не устраняет риски, а просто позволяет измерить их количественно и лучше их осознать. Хорошим инструментом для такой оценки предположений служит моделирование по методу Монте-Карло.
Делайте ваши ставки!
Как мы увидели во второй главе, хотя затраты на сбор и хранение данных снизились, но по крайней мере столь же быстро растут объемы данных и аналитические потребности организаций. Сегодня существует такое широчайшее разнообразие аналитических возможностей, что порой это приводит в замешательство. Все решения о том, где следует сделать ставки, должны быть основаны на надежном суждении. Причем в отношении больших данных и операционной аналитики оно должно быть не менее надежным, чем в прошлом. Ведь чем больше появляется данных и во все более разнообразных сочетаниях, тем проще пойти по ложному пути. Или же можно наткнуться на ложные корреляции, которые не имеют никакого отношения к реальности.
Например, при построении статистических моделей можно угодить в стандартную ловушку ввиду того, что многие модели устанавливают меру доверия к своим оценкам значений параметров. Общепринятый стандарт требует по крайней мере 99 %-ного уровня доверия к тому, что эффект действительно существует, а не является чисто случайным совпадением. Когда тестируется всего несколько факторов, шансы на успех невелики и, вполне вероятно, что некая абсолютная фальшивка будет признана статистически значимой. Но подумайте о петабайтах сенсорных данных, генерируемых современным самолетом. Возможно, появятся тысячи или даже десятки тысяч метрик, способных коррелировать с такими событиями, как перегрев двигателя. Если при исследовании 20 000 факторов устанавливается уровень доверия в 99 %, то можно ожидать, что 200 совершенно ложных факторов будут признаны статистически значимыми.
Необходимо решить, какие метрики должны быть включены в анализ, чтобы оставить из них только разумные. Но даже после такой фильтрации может остаться множество метрик, которые будут приводить к выявлению ложных эффектов. После построения модели требуется осуществить дополнительный анализ для проверки реальности обнаруженных эффектов. Оценке должен подвергаться весь процесс.
Не спешите выносить приговор
Отличный пример, хорошо иллюстрирующий затронутые в этом разделе темы, связан с компанией Boeing и ее самолетом модели 787. В 2012 г. компания попала в новости из-за проблем с аккумуляторами на 787{67}. Это дорого обошлось ей и в финансовом плане, и с точки зрения ущерба репутации. Во время моего выступления на одной из конференций меня спросили, не считаю ли я, что Boeing облажалась, не сумев исправить проблему с аккумуляторами до выпуска самолета на рынок. Задавший этот вопрос человек считал, что, получив в ходе тестирования все сенсорные данные, компания должна была обнаружить дефект. Я ответил, что не совсем справедливо рассматривать ситуацию под таким углом, поскольку не все так просто. Я предпочитаю считать людей или компании невиновными до тех пор, пока их вина не доказана. Задним числом может казаться, что выявить проблему с аккумуляторами было несложно, но давайте рассмотрим несколько соображений, которые противоречат такой точке зрения.