Например, посетителей могут предупреждать о том, что в той или иной части парка наблюдается меньшее скопление народа, чем там, где они находятся сейчас. Или же, если очереди удлиняются, гостей могут поощрить к продлению перерыва, предложив им закуски со скидкой. Разумеется, анализ перемещения толпы может выходить за рамки операционной аналитики, но это уже другая тема.
Благодаря информации, поставляемой MagicBand, Disney также смогла изменить взаимодействие со своими гостями до и во время посещения парка. Давая возможность получать Fast Pass, используя браслет, компания позволяет посетителям тратить меньше времени на стояние в очереди. Тем самым она соблазняет их провести больше времени в магазинах и ресторанах, чтобы они потратили там больше денег. Таким образом, анализируя перемещение гостей по парку и управляя им, Disney способна не только значительно улучшить их восприятие, но и заработать дополнительную прибыль. Люди могут даже не замечать влияния этих технологий, а просто порадуются тому, что им не приходится стоять лишний час в очереди, – и могут потратить этот час на перекус и приобретение очередного сувенира. Все довольны.
Чем больше аналитики, тем лучше восприятие
По мере того как организация собирает все больше информации о наших с ней взаимодействиях, она способна лучше подстроиться к нам. Благодаря запуску процессов операционной аналитики, которые в текущем режиме учитывают все наши последние действия, организация может как персонализировать, так и улучшить восприятие ее нами.
Когда посетители желают воспользоваться функциями MagicBand, например на подходе к кассе или анимированному персонажу, сотрудники парка узнают, кто перед ними. Это легко сделать благодаря устройствам, которые считывают с браслетов уникальные идентификаторы. В нижеприведенном примере косвенно затрагивается неприкосновенность личной жизни, о чем мы подробнее поговорим в шестой главе, а сейчас сосредоточимся на том, как MagicBand может воздействовать на посетителей.
Представьте себе маленького ребенка, который впервые посещает Диснейленд. Одно из самых потрясающих впечатлений для него возникнет, когда к нему подойдет принцесса или Микки Маус и заговорит с ним. Благодаря новым браслетам, при приближении к ребенку Микки Мауса его помощник с помощью планшета считает идентификатор с браслета ребенка и получит на экране примерно следующую информацию: «Это Джон Смит. Он из Атланты, штат Джорджия. Здесь он празднует свой девятый день рождения. Он очень любит конфеты “Мишка Гамми”». Скрытый анализ позволит определить, какие специальные предложения можно сделать, исходя из информации, известной о ребенке и его семье. Эти детали помощник может прошептать на ухо Микки.
Теперь представьте, насколько будет потрясен ребенок, если к нему подойдет Микки и вместо простого «Привет, как дела?» произнесет: «Привет, Джон! Как здорово видеть тебя здесь! Тебе пришлось проделать длинный путь из Атланты, и я очень рад, что ты решил отпраздновать свой день рождения с нами! Если ты сейчас зайдешь вон в ту кондитерскую, то сможешь выбрать там себе подарок – пакетик “Мишки Гамми”. Просто скажи, что это я послал тебя к ним, и ты получишь свои сладости да еще с улыбкой впридачу!» Если теперь семья пойдет в кондитерскую, то кассир увидит на своем терминале предложение бесплатно выдать пакетик сладостей и быстро выполнит операцию. Такая персонализация совершенно изменит восприятие парка ребенком и его семьей.
В этом случае не требуется очень сложная аналитика. Тем не менее аналитический процесс должен определить, кто и какие предложения должен получить, а также гарантировать, что другие многочисленные персонажи в тот же день не сделают аналогичное предложение и что семья не попытается получить бесплатный пакетик еще раз. Обновление информации о гостях должно происходить очень быстро. Такая простая аналитика, опирающаяся на детализированные и быстро обновляемые данные, способна сильно повлиять на восприятие посетителей.
Создание прозрачности для потребителей
Теперь давайте рассмотрим пример того, как датчики могут напрямую обслуживать клиентов. Продукт, в котором образцовое обслуживание выведено на новый уровень благодаря использованию данных и аналитики, – это программа SenseAware («Сведущий разум») от компании FedEx{24}. SenseAware предлагается к продаже в виде оснащенного датчиками устройства, прикрепляемого к пересылаемой таре. Датчики отслеживают несколько параметров окружающей среды, их мы рассмотрим чуть ниже. С учетом его стоимости продукт нецелесообразно использовать при отправке документов и небольших посылок. Однако он настоятельно рекомендуется при отправке дорогостоящего или чувствительного к окружающим условиям груза.
Возьмем предметы искусства и коллекционирования или дорогостоящие скоропортящиеся товары. Один из главных рисков при их покупке связан с транспортировкой. Помещенный в тару и активированный девайс SenseAware в постоянном режиме отслеживает многочисленные важные показатели окружающей среды. Они включают в себя местонахождение посылки, температуру, влажность и даже уровень освещенности и барометрическое давление внутри упаковки. Например, изменение уровня освещенности указывает на то, что упаковка была вскрыта: как только упаковка открывается, в нее попадает поток света, который немедленно регистрируется световыми датчиками.
Все эти данные передаются в режиме реального времени в FedEx, так что клиент может в любой момент проконтролировать, что происходит с его посылкой. Текущий мониторинг недоступен только на борту самолета. В соответствии с правилами все собираемые за время полета данные кэшируются. По приземлении самолета кэшированные данные пакетом передаются в центральную систему, после чего устройство возобновляет передачу данных в текущем режиме. Клиенты могут проверить последние данные в любое время.
Такой сервис снабжает клиентов ценной информацией. Когда вам нужно переслать дорогостоящий или хрупкий груз, разве вы не хотели бы иметь возможность проконтролировать, что перевозчик транспортирует его при правильной температуре и аккуратно на протяжении всего пути? Перевозчик, который обеспечивает такого рода присмотр, будет иметь серьезное конкурентное преимущество перед теми, кто этого не делает.
Разумеется, продукт также полезен для самой FedEx, поскольку, если компанию обвинят в неправильной транспортировке и причинении ущерба, она может использовать данные SenseAware в качестве доказательства, чтобы защитить себя от обвинений. Например, данные могут показать, находился ли груз под контролем сотрудников FedEx в то время, когда температура и влажность поднялись до неприемлемого уровня. Применение SenseAware уместно не во всех случаях. Но, когда уместно, польза от него очень-очень большая. Пусть аналитика здесь элементарная, зато ценная.
Оптимизация обслуживания пассажиров
Операционная аналитика может повысить удовлетворенность клиентов при одновременном снижении операционных издержек. Замечательный пример тому – это перенаправление пассажиров при нарушениях расписания авиарейсов. В прошлом, когда задержавшийся рейс приземлялся в аэропорту, недовольные и раздраженные пассажиры, опоздавшие на пересадку, были вынуждены осаждать местных агентов авиакомпаний и обрывать их телефоны. Свободные места на альтернативных рейсах выделялись по принципу «первый пришел – первый обслужен». Кто первым добирался до агента, тот и получал место на ближайший рейс.
Сегодня процессы, используемые для разрешения таких ситуаций, стали гораздо более утонченными. Если авиакомпания понимает, что рейс будет задержан, она может определить, какие пассажиры столкнутся с проблемами. Например, если мой рейс задерживается на час и пункт прилета является конечной целью моего путешествия, никаких мер принимать не нужно. Точно так же не нужны никакие меры в том случае, если рейс задерживается на 30 минут, а до пересадки у пассажиров есть в запасе два часа. Авиакомпания может определить, кто нуждается в помощи и какие альтернативы доступны. Затем она может расставить приоритеты, распределив эти альтернативы среди пассажиров на основе стоимости билета, статуса постоянного клиента авиалинии, предыдущих нарушений расписания и ряда других факторов. Аналитика, стоящая за этими решениями, способна включать и такие сложные модели, которые прогнозируют вероятную реакцию конкретного пассажира в зависимости от степени нарушений.