Литмир - Электронная Библиотека
Содержание  
A
A

14. Проверьте правильность рассуждения:

"Вода, например, не горит. А хотите знать почему? Да потому же, почему не горит зола. Вода сама получилась от горения" (М. Ильин).

15. Покажите нелогичность поведения Ходжи Насреддина:

"Однажды Ходжа надел черные одежды и вышел на улицу. Какие-то невежи спросили его: "Ходжа, что с тобой, ты весь в черном?" А Ходжа отвечал: "Умер отец моего сына, и я ношу по нем траур" (Анекдоты о Ходже Насреддине).

5 ГЛАВА. Правдоподобные рассуждения

К правдоподобным относят все недедуктивные рассуждения, которых заключения в них не достоверны, а лишь вероятны в той или иной степени. Поэтому их называют также вероятностными рассуждениями. Термин "правдоподобность" означает сходство, подобие с истиной, и на этом основании в традиционной логике правдоподобные рассуждения резко противопоставлялись дедуктивным умозаключениям, которые мы рассматривали в предыдущей главе. В то время как дедуктивное умозаключение полностью переносит истинность посылок на заключение, и его результат оказывается достоверно истинным, посылки правдоподобного рассуждения лишь с той или иной степенью вероятности подтверждают заключение. Эта степень подтверждения не остается постоянной, а изменяется по мере установления новых фактов, подтверждающих или даже опровергающих заключение. Это обстоятельство показывает тесную связь правдоподобных рассуждений с гипотезами, предсказания которых имеют также вероятностный характер.

В современной логике исследование правдоподобных рассуждений ведется на основе понятий и методов исчисления вероятностей. Однако этим понятиям дается иная, а именно логическая интерпретация, ибо логика непосредственно изучает различные виды отношений между высказываниями. В дедуктивной логике такое отношение называют логическим следованием или выводом. Напомним, что сам термин "дедукция" в переводе на русский означает вывод. В наиболее знакомой нам форме правдоподобных рассуждений - в индукции - речь идет о таком логическим отношении, когда на основании изучения ограниченного числа случаев, фактов или явлений делают заключение обо всем их классе. Другими словами, здесь истинность посылок переносится на неисследованные факты, случаи, события. В результате заключение может оказаться и ошибочным. Как показывает сам термин "индукция", означающий наведение, заключение такого рассуждения лишь приближает нас к истине, облегчает ее поиски, наводит на нее, но отнюдь не гарантирует ее достижение. Никаких правил, аналогичных дедукции, в индуктивной логике не существует.

Несмотря на вероятностный характер своих заключений правдоподобные рассуждения по своей структуре, направленности движения мысли, области применения значительно отличаются друг от друга. В связи с этим возникает необходимость специального обсуждения наиболее распространенных форм правдоподобных рассуждений, к которым наряду с индукцией относятся умозаключения по аналогии и статистические выводы.

Говоря о вероятностном характере правдоподобных рассуждений, необходимо выяснить, о какой интерпретации вероятности в данном случае идет речь. В настоящее время почти общепринятой считается частотная, или статистическая, интерпретация вероятности, согласно которой вероятность определяется через относительную частоту в длинной последовательности испытаний. На практике установлено, что массовые случайные или повторяющиеся события обладают определенной устойчивой частотой, которая эмпирически принимается за вероятность таких событий. Такая интерпретация вероятности не подходит для характеристики правдоподобных рассуждений, поскольку последние имеют дело не с эмпирической действительностью, а ее отображением в логических рассуждениях. Разумеется, в реальных научных рассуждениях в физике, химии, биологии и социальных науках мы обращаемся как к статистической, так и к логической интерпретации. С помощью первой оцениваются объективные события изучаемого нами мира, делаются предсказания о степени вероятности их наступления. Логическая вероятность служит для оценки правдоподобности наших предположений и гипотез на основе имеющихся данных. К рассмотрению различных интерпретаций вероятности мы сейчас и обратимся.

5.1. Статистическая и логическая вероятность

Элементы математической теории вероятностей были введены еще в XVII в., когда ученые обратились к анализу азартных игр. Эти игры организованы таким образом, что шансы участников выиграть оказываются равновозможными. В самом деле, если игральная кость, представляющая собой тщательно изготовленный кубик, на каждой грани которого нанесены очки от 1 до 6, будет подбрасываться вверх, то выпадение каждой грани, т.е. любого числа очков, будет одинаково вероятным. Аналогично этому организована игра в рулетку или в карты. Во всех этих играх существует конечное число альтернатив и осуществление каждой из них является одинаково возможной. Поэтому для численного определения вероятности события (выпадения определенного количества очков при бросании кости, попадания шарика в сектор рулетки, получения карты и т.п.) необходимо подсчитать число всех равновозможных событий и число тех событий, которые благоприятствуют появлению ожидаемого события. Тогда отношение числа благоприятствующих событий к числу всех равновозможных и будет определять вероятность интересующего нас события. Так, выпадение "орла" при бросании монеты будет равно 1/2, так как равновозможными здесь являются как выпадение "орла", так и "решки"; благоприятствующим же случаем считается выпадение именно "орла". Аналогично этому вероятность выпадения 5 очков при бросании кости равна 1/6. В общей форме такое соотношение между благоприятствующими событиями и всеми равновозможными можно представить формулой:

P(A) = m/n.

где Р (А) обозначает вероятность события А;

m - число случаев, благоприятствующих появлению события А;

п - число всех равновозможных событий.

Нередко благоприятствующий случай называют шансом, и поэтому говорят, например, что шанс выбросить пятерку при игре в кости составляет 1/6.

Подход к интерпретации вероятности, возникший из анализа азартных игр и применимый к событиям, исходы которых являются симметричными или равновозможными, получил название классической концепции вероятности. Свое завершение и наиболее ясную формулировку он нашел в трудах великого французского математика и астронома П.С. Лапласа.

Однако этот взгляд на вероятность оказался ограниченным с точки зрения практического приложения и неудовлетворительным теоретически. В самом деле, понятие равновозможности, на которое опирается определение вероятности, ничем, по сути дела, не отличается от равновероятности. В результате вероятность определяется через равновероятность, а это означает, что в таком определении допускается порочный круг. Но главное состоит даже не в этом, поскольку симметричные исходы событий либо специально организованы, как в азартных играх, либо встречаются крайне редко. События, с которыми мы встречаемся в науке и в реальной жизни, лишь в исключительных случаях бывают симметричными. Поэтому к ним неприменимо классическое понятие вероятности.

Еще в античном мире ученые обратили внимание на то, что степень возможности определенного повторяющегося события зависит от частоты его появления. Чем чаще повторяется событие, тем выше степень его возможности или вероятности. Такие события впоследствии стали называть массовыми случайными событиями, ибо они во-первых, отличаются от регулярных, закономерно появляющихся событий, во-вторых, они не являются уникальными единичными событиями, о возможности появления которых бессмысленно было бы судить по частоте.

Эта идея вероятности как относительной частоты появления массового случайного события интуитивно осознавалось и в статистике, и в страховом деле, и в конкретных естественных и социально-экономических науках. Но ясное и точное представление о новой интерпретации вероятности сложилось лишь в начале нашего века. В его основе лежит понятие об относительной частоте появления массового случайного события при достаточно длительных наблюдениях или испытаниях. Так, наблюдая случаи заболевания инфекционной болезнью, например дифтеритом, у определенных групп населения, медики могут выявить ее относительную частоту, вычислив отношение числа заболевших за определенный период времени к общему числу группы населения. Аналогично этому качество производимой массовой продукции определяют путем отношения числа бракованных изделий к общему числу изделий, изготовленных в течение недели, месяца или квартала. Очевидно, что ни о каких равновероятностных исходах подобных событий речи быть не может. Поэтому вероятность в таких случаях определяют путем статистических выкладок. Вот почему это понятие вероятности называется статистическим. Численно вероятность определяется через относительную частоту, отсюда ее другое название - частотной. Такой подход принят в статистике, где вероятность отождествляется с относительной частотой появления массового случайного события при достаточно длительных испытаниях. Длительность испытаний в определении никак не оговаривается, ибо она должна быть установлена конкретным исследованием.

38
{"b":"238968","o":1}