Литмир - Электронная Библиотека
Содержание  
A
A

Ложные аналогии, например, уподобление общества живому организму, конфликтов и противоречий - борьбе за существование и т.п., хотя и кажутся на первый взгляд понятными и убедительными, но не раскрывают сущности общественных процессов, их отличия от явлений, происходящих в органическом мире, а тем самым не приближают нас к истине, а уводят от нее. Даже в истории естествознания на основе ошибочных аналогий было построено немало ложных гипотез и концепций. Стоит вспомнить хотя бы гипотезу о флогистоне, теплороде и эфире, первая из которых была предложена для объяснения явлений горения, вторая - тепловых процессов, а третья - оптических явлений. С другой стороны, аналогия о световых волнах, возникшая по аналогии с волнами, появляющимися на воде, оказалась весьма плодотворной и способствовала возникновению волновой теории света. Даже представление о звуковых волнах зародилось из наблюдения за волнами на поверхности жидкости.

Все это свидетельствует о том, что аналогия - если она строится научно - служит одним из эффективных средств эвристического поиска, в особенности когда она объединяется с материальным или концептуальным моделированием исследуемых процессов.

В ораторской и художественной речи аналогии в сочетании с метафорами и наглядными, яркими образами очень часто используются для того, чтобы придать речи особую убедительность, наглядность и доступность для восприятия слушателями или читателями. Возникающие при этом ассоциации и эмоции усиливают воздействие рациональных аргументов и тем самым оказывают свое влияние на их сознание и поступки. Но эти достоинства аналогии легко превращаются в недостатки, если не соблюдаются границы ее применения, а тем более когда аналогия оказывается ложной. Так, например, первоначальная аналогия между деятельностью мозга и работой вычислительной машины оказалась очень полезной, так как привела к получению важных результатов. Однако распространение этой аналогии за пределы ее реальных границ может привести к ошибочным выводам и стать тормозом для дальнейших исследований.

В процессе аргументации основанные на аналогии доводы оцениваются как вероятностные по тем же критериям, как и индуктивные. Поэтому уточнение выводов аналогии, оправданность переноса одних свойств и отношений на другие предметы и системы зависит прежде и больше всего от существования внутренней, закономерной связи между свойствами и отношениями сходных или подобных систем. В конечном счете аналогия и моделирование опираются на подобие структур исследуемых предметов и систем. Тождественность или совпадение структур может быть выражено с помощью математического понятия изоморфизма, а сходство и подобие - понятия гомеоморфизма. В первом случае свойства и отношения одной системы могут быть однозначно соотнесены с другой, во-втором - только частично. Так, отношения, исследуемые на модели какого-либо объекта, отображают лишь небольшую часть отношений и свойств самого объекта.

5.6. Статистические умозаключения

С расширением применения статистических методов в естественных, технических, а в последние десятилетия и социальных науках ученые и практики все чаще стали прибегать в своей аргументации к статистическим обобщениям и выводам. Подобные умозаключения основываются на частотной (статистической) интерпретации вероятности, о которой шла речь в разд. 5.1 настоящей главы.

Как и индуктивные рассуждения, статистические умозаключения относятся к правдоподобным рассуждениям, поскольку их результаты имеют лишь вероятностный характер. Очевидно также, что чем больше и разнообразнее будут случаи, подтверждающие статистические обобщения, тем выше станет степень вероятности заключения. Однако сама структура и ход рассуждения в статистике значительно отличается от индуктивного умозаключения.

Действительно, в статистических рассуждениях особое значение приобретают такие понятия, как генеральная совокупность (или популяция), с одной стороны, и выборка (или образец), с другой. При этом рассуждение может идти как от выборки к генеральной совокупности, так и от последней - к выборке. Ничего подобного не встречается в индукции. Более того, заключение от генеральной совокупности к выборке, как рассуждение от общего к частному, можно считать специфическим видом дедукции, если придерживаться традиционного взгляда на нее. Кроме того, статистическая информация отображает результаты исследования массовых случайных или повторяющихся событий, ибо она истолковывается в терминах частотной интерпретации вероятности.

Несмотря на такое различие, между индуктивными и статистическими рассуждениями имеется много общего. Для нас особенно важным является тот метод статистических обобщений, который совершается от выборки к генеральной совокупности. Он стоит ближе к индукции, чем аналогия. В практическом отношении статистический метод обобщения играет наибольшую роль как в научных исследованиях, так и при принятии решений в других областях деятельности. Хорошо известно, что многочисленные прогнозы и оценки о результатах выборов, популярности тех или иных решений, рейтинге политических деятелей, предпочтениях избирателей и опроса населения делаются именно на основе анализа мнений и ответов сравнительно небольшой части людей, составляющих выборку, из некоторой генеральной совокупности. Для того чтобы прогнозы стали более надежными, необходимо стремиться к тому, чтобы структура выборки отражала структуру генеральной совокупности, из которой она получена.

Общая схема статистического обобщения весьма проста:

к % элементов образца обладают свойством Р

Вероятно, к % элементов генеральной совокупности присуще свойство Р.

Вероятность такого вывода определяется прежде всего двумя условиями:

1) размерами выборки, ибо чем больше ее размеры, тем больше элементов всей совокупности доступно для проверки, и тем выше будет вероятность заключения, относящаяся к характеристике генеральной совокупности;

2) репрезентативности выборки, т.е. выборка, полученная из всей совокупности, должна адекватно отражать распределение свойств и отношений в генеральной совокупности. Очевидно, что свойство (или отношение), встречающееся только в выборке, нельзя без корректировки переносить на всю совокупность.

Существует тщательно разработанная методика и техника проведения выборки, главная цель которой состоит в обеспечении репрезентативности выборки. Так, для проведения опросов населения особое внимание должно быть уделено его стратификации (группировке) по возрастным, национальным, имущественным, образовательным и другим признакам, чтобы результаты исследования выборки можно было перенести на всю генеральную совокупность, а полученный вывод оказался более правдоподобным.

Многочисленные примеры явно неудачных прогнозов свидетельствуют о нарушении этого требования. Наиболее впечатляющим примером такого рода был прогноз о вероятности выбора президентом США Ф.Д. Рузвельта. По всем данным опросов победить на выборах должен был его противник из республиканской партии, шансы которого оценивались как 2:1. Последующий анализ показал, что выборка была связана с явным игнорированием стратификации избирателей, в особенности по доходам. Опрашивались преимущественно состоятельные люди, которые меньше всего пострадали от Великой депрессии 1929-1933 гг. К тому же опрос проводился по телефону, а в 1936 г. они имелись далеко не у всех избирателей. Значительная часть населения, пострадавшая от депрессии, не учитывалась в выборках опросов. Но именно она с энтузиазмом восприняла предвыборную программу Рузвельта и вопреки официальным прогнозам обеспечила ему внушительную победу на президентских выборах 1936 г.

Нередко ошибочность прогнозов связана с нарушением принципа рандомизации, который требует, чтобы отбор элементов выборки был непредвзятым. Это означает, что каждый элемент из генеральной совокупности с одинаковой вероятностью мог быть включенным в состав выборки. Нередко нарушение этого требования происходит неосознанно в силу тех или иных субъективных факторов: склонностей, предубеждений, устоявшихся стереотипов мышления и т.п. Бывает, однако, немало и таких случаев, когда в угоду властям, успокоению народа, ложно понятому патриотизму и т.д. сознательно нарушается принцип рандомизации, чтобы обеспечить благоприятный прогноз.

46
{"b":"238968","o":1}