Литмир - Электронная Библиотека
Содержание  
A
A

Искусство убеждения, ведения спора, мастерства обоснованно защищать свое мнение и возражать оппоненту в ходе спора и полемики культивировалось в рамках античной риторики, ориентированной на совершенствование ораторской речи, и эристики - специального учения о споре. Первые учителя риторики многое сделали для распространения и развития знаний о мастерстве убеждения, приемах спора и построения публичной речи, обращая особое внимание на эмоционально-психологические, нравственные и ораторские ее стороны и особенности. Однако впоследствии, когда школы риторики стали возглавлять софисты, они стремились научить своих учеников не поискам истины в ходе спора, а скорее выигрышу, победе в словесном состязании любой ценой. В этих целях широко использовались преднамеренные логические ошибки, которые в дальнейшем стали называть софизмами, а также разнообразные психологические уловки и приемы для отвлечения внимания оппонента, внушения, переключения спора с основной темы на второстепенные моменты и т.п.

Против этой тенденции в риторике решительно выступили великие античные философы Сократ, Платон и Аристотель, которые считали главным средством убеждения - обоснованность содержащихся в ораторской речи суждений, их правильную связь в процессе рассуждений, т.е. вывода одних суждений из других. Именно для анализа рассуждений и была создана Аристотелем (IV век до н.э.) первая система логики, названная силлогистикой. Она представляет собой простейшую, но вместе с тем наиболее часто используемую форму дедуктивных умозаключений, в которых заключение (вывод) получается из посылок по правилам логической дедукции. Заметим, что термин дедукция в переводе с латинского означает вывод.

Для пояснения сказанного обратимся к античному силлогизму:

Все люди смертны.

Кай — человек.

________________________________

Следовательно, Кай смертен.

Здесь, как и в других силлогизмах, умозаключение совершается от общего знания о некотором классе предметов и явлений к знанию частному и единичному. Сразу же подчеркнем, что в других случаях дедукция может осуществляться от частного к частному или от общего к общему.

Главное, что объединяет все дедуктивные умозаключения, состоит в том, что заключение в них следует из посылок по логическим правилам вывода и имеет достоверный, объективный характер. Другими словами, заключение не зависит от воли, желаний и предпочтений рассуждающего субъекта. Если вы принимаете посылки такого умозаключения, то обязаны принять и его заключение.

Часто также заявляют, что определяющим признаком дедуктивных умозаключений является логически необходимый характер заключения, его достоверная истинность. Иначе говоря, в таких умозаключениях истинностное значение посылок полностью переносится на заключение. Вот почему дедуктивные умозаключения обладают наибольшей силой убеждения и широко применяются не только для доказательства теорем в математике, но и всюду, где необходимы достоверные заключения.

Очень часто в учебниках логика определяется как наука о законах правильного мышления или же принципах и способах правильных умозаключений. Поскольку, однако, остается неясным, какое мышление считается правильным, то в первой части определения содержится скрытая тавтология, так как неявно предполагается, что такая правильность достигается при соблюдении правил логики. Во второй части предмет логики определяется точнее, ибо главная задача логики сводится к анализу умозаключений, т.е. к выявлению способов получения одних суждений из других. Нетрудно заметить, что когда говорят о правильных умозаключениях, то неявно или даже явно имеют в виду дедуктивную логику. Именно в ней только и существуют вполне определенные правила для логического вывода заключений из посылок, с которыми мы познакомимся более детально в дальнейшем. Часто дедуктивную логику отождествляют также с формальной логикой на том основании, что последняя изучает формы умозаключений в отвлечении от конкретного содержания суждений. Такой взгляд, однако, не учитывает других способов и форм рассуждений, которые широко применяются как в опытных науках, изучающих природу, так и в социально-экономических и гуманитарных науках, опирающихся на факты и результаты общественной жизни. Да и в повседневной практике мы часто делаем обобщения и строим предположения, исходя из наблюдения частных случаев.

Рассуждения подобного рода, в которых на основе исследования и проверки каких-либо частных случаев приходят к заключению о неизученных случаях или о всех явлениях класса в целом, называют индуктивными. Термин индукция означает наведение и хорошо выражает сущность таких рассуждений. В них обычно изучаются свойства и отношения некоторого числа членов определенного класса предметов и явлений. Выявленное в результате этого общее свойство или отношение затем переносится на неисследованные члены или на весь класс полностью. Очевидно, что такое заключение не может считаться достоверно истинным, ибо среди неисследованных членов класса и тем более всего класса в целом могут оказаться члены, которые не обладают предполагаемым общим свойством. Поэтому заключения индукции имеют не достоверный, а лишь вероятностный характер. Часто такие заключения называют также правдоподобными, гипотетическими или предположительными, так как они не гарантируют достижение истины, а лишь наводят на нее. Они имеют эвристический (поисковый), а не достоверный характер, помогая искать истину, а не доказывать ее. Наряду с индуктивными рассуждениями сюда относят также выводы по аналогии и статистические обобщения.

Отличительная особенность подобных недедуктивных рассуждений состоит в том, что в них заключение не следует логически, т.е. по правилам дедукции, из посылок. Посылки лишь с той или иной степенью подтверждают заключение, делают его более или менее вероятным или правдоподобным, но не гарантируют его достоверной истинности. На этом основании вероятностные рассуждения иногда явно недооцениваются, считаются второстепенными, вспомогательными и даже исключаются из логики.

Такое отношение к недедуктивной и, в частности к индуктивной логике объясняется в основном следующими причинами:

• Во-первых, - и это главное - проблематический, вероятностный характер индуктивных заключений и связанная с ним зависимость результатов от имеющихся данных, неотделимость от посылок, незавершенность заключений. Ведь с получением новых данных меняется и вероятность таких выводов.

• Во-вторых, наличие субъективных моментов в оценке вероятностного логического отношения между посылками и заключением рассуждения. Одному эти посылки, например факты и свидетельства, могут показаться убедительными, другому - нет. Один считает, что они достаточно сильно подтверждают заключение, другой придерживается противоположного мнения. Подобных разногласий не возникает при дедуктивном выводе.

• В-третьих, такое отношение к индукции объясняется также историческими обстоятельствами. Когда впервые возникла индуктивная логика, то ее создатели, в частности Ф. Бэкон, верили, что с помощью ее канонов, или правил, можно открывать новые истины в опытных науках чуть ли не чисто механическим путем. "Наш же путь открытия наук, - писал он, - немногое оставляет остроте и силе дарования, но почти уравнивает их. Подобно тому как для проведения прямой или описания совершенного круга много значат твердость, умелость и испытанность руки, если действовать только рукой, - мало или совсем ничего не значит, если пользоваться циркулем и линейкой. Так обстоит и с нашим методом". Говоря современным языком, творцы индуктивной логики рассматривали свои каноны как алгоритмы открытия. С развитием науки становилось все более очевидным, что с помощью таких правил (или алгоритмов) можно открывать лишь простейшие эмпирические связи между наблюдаемыми на опыте явлениями и характеризующими их величинами. Открытие же сложных связей и глубоких теоретических законов требовали использования всех средств и методов эмпирического и теоретического исследования, максимального применения психических и интеллектуальных способностей ученых, их опыта, интуиции и таланта. А это не могло не породить негативного отношения к механическому подходу к открытию, существовавшему раньше в индуктивной логике.

2
{"b":"238968","o":1}