Для практических целей длину светового дня изменяют при выращивании культур в закрытом грунте, управляя продолжительностью освещения, увеличивают яйценоскость кур, регулируют размножение пушных зверей.
Средние многолетние сроки развития организмов определяются прежде всего климатом местности, именно к ним и приспособлены реакции фотопериодизма. Отклонения от этих сроков обусловливаются погодной обстановкой. При изменении погодных условий сроки прохождения отдельных фаз могут в определенных пределах изменяться. Это особенно сильно проявляется у растений и пойкилотермных животных. Так, растения, не набравшие необходимой суммы эффективных температур, не могут зацвести даже в условиях фотопериода, стимулирующих переход в генеративное состояние. Например, в Подмосковье береза зацветает в среднем 8 мая при накоплении суммы эффективных температур 75 °C. Однако в годовых отклонениях сроки ее зацветания изменяются от 19 апреля до 28 мая. Гомойотермные животные отвечают на особенности погоды изменением поведения, сроков гнездования, миграций.
Изучением закономерностей сезонного развития природы занимается особая прикладная отрасль экологии – фенология (дословный перевод с греческого – наука о явлениях).
Согласно биоклиматическому закону Хопкинса, выведенному им применительно к условиям Северной Америки, сроки наступления различных сезонных явлений (фенодат) различаются в среднем на 4 дня на каждый градус широты, на каждые 5° долготы и на 120 м высоты над уровнем моря, т. е. чем севернее, восточнее и выше местность, тем позже наступление весны и раньше – осени. Кроме того, фенологические даты зависят от местных условий (рельефа, экспозиции, удаленности от моря и т. п.). На территории Европы сроки наступления сезонных событий изменяются на каждый градус широты не на 4, а на 3 дня. Соединяя на карте точки с одинаковыми фенодатами, получают изолинии, отражающие фронт продвижения весны и наступления очередных сезонных явлений. Это имеет большое значение для планирования многих хозяйственных мероприятий, в частности сельскохозяйственных работ.
Глава 6. АДАПТИВНАЯ МОРФОЛОГИЯ ОРГАНИЗМОВ
Среди приспособлений животных и растений к среде немаловажную роль играют морфологические адаптации, т. е. такие особенности внешнего строения, которые способствуют выживанию и успешной жизнедеятельности организмов в обычных для них условиях. «Целесообразность» строения живых существ долго не могла получить материалистического объяснения. Ч. Дарвин, выдвигая теорию естественного отбора как главного фактора эволюции, обратил внимание на то, что результатом естественного отбора может быть не только нарастание различий между близкими видами, но и выработка у неродственных форм внешнего сходства, если эти виды ведут сходный образ жизни в близких условиях среды. Этот процесс получил название конвергенции. Конвергенция признаков у разных форм в наибольшей мере затрагивает те органы, которые находятся в непосредственном соприкосновении с внешней средой (рис. 67). Внутренние черты строения организмов, их общий план строения остаются при этом неизменными, отражая родство и происхождение видов.
Формообразующая роль факторов среды, т. е. влияние их на морфологию организмов, наглядно выступает при изучении роли влажности, температуры, движения воды и воздуха, плотности среды, объема пригодного для жизни пространства и др. Чем жестче физические условия среды, тем ограниченнее пути приспособления к ней. Одинаковые принципы освоения среды ведут к выработке сходных морфологических адаптаций у разных видов, даже сильно различающихся по плану своего строения.
На форму быстро движущегося в жидкости тела накладывают жесткие ограничения законы физики. На него действует лобовое сопротивление, которое зависит от природы жидкости, скорости движения, площади проекции тела перпендикулярно направлению движения и длины тела в направлении потока. Для жидкости с такой вязкостью и плотностью, как вода, лобовое сопротивление для тел одинакового объема минимально, если отношение длины к наибольшему диаметру равно примерно 4,5. Хорошие пловцы среди животных обладают именно такими пропорциями, хотя достигают этого разными средствами. Плывущие кальмары так складывают щупальца, что тело становится торпедообразным, с оптимальным соотношением длины и диаметра, их скорость достигает 41 км/ч. У рыб большое значение имеет форма хвостового плавника; тюлени соединяют и вытягивают задние ласты. По пропорциям тела можно судить о максимально возможной скорости животного в воде (рис. 68). Дельфин-белобочка может плыть со скоростью 44 км/ч, тогда как тюлени, пропорции которых менее оптимальны, – не более 20 км/ч. Обтекаемость тела, таким образом, – необходимый путь приспособления к быстрому движению в воде.
Рис. 67. Конвергентное развитие поверхностей у животных, способных к планирующему полету
Рис. 68. Различные формы тела рыб (по Г. В. Никольскому, 1974): 1– стреловидная (сарган); 2 – торпедовидная (скумбрия); 3 – сплющенная с боков (лещ); 4 – тип луны-рыбы; 5 – тип камбалы, 6 – змеевидная (угорь); 7 – лентовидная (сельдяной король); 8 – плоская (скат); 9 – шаровидная (кузовок)
Среди самых разнообразных по внешнему облику планктонных организмов (одноклеточных водорослей, кишечнополостных, ракообразных, моллюсков, червей, личинок разных групп беспозвоночных, пелагической икры рыб и т. д. (см. рис. 39) мы встречаем три описанных выше способа приспособления к парению: 1) уменьшение объема тела; 2) развитие разнообразных выростов; 3) увеличение содержания в теле воды, жиров и газообразных продуктов. Во всех случаях достигается один эффект: уменьшение отношения массы тела к его площади, что обеспечивает уравновешивание сил тяжести и трения о воду. Форма планктеров и здесь играет большую роль в обеспечении их образа жизни, но отвечает другим (по отношению к нектерам) требованиям законов физики – необходимости увеличения относительной поверхности тела. Это может достигаться разными путями: уменьшением размеров организмов, уплощением, удлинением, умножением числа различных выступов, щетинок и т. п.
Таким образом, общее число возможных морфологических приспособлений к одной и той же среде диктуется как ее свойствами, так и способами ее освоения.
Морфологический тип приспособления животного или растения к основным факторам местообитания и определенному образу жизни называют жизненной формой организма.
6.1. Жизненные формы растений
Понятие жизненной формы зародилось при изучении растительного покрова. Сам термин вошел в науку только в конце XIX в., но большое разнообразие форм растений в природе, определяющих ландшафты разных территорий, привлекало ботаников еще в древности.
Древнегреческий ученый и философ, ученик и друг Аристотеля, Теофраст (Феофраст) более чем за три столетия до нашей эры в произведении «Исследования о растениях» систематизировал накопленные знания по морфологии растений, выделил деревья, кустарники, полукустарники, травы и описал их. Деревья он характеризовал как растения со стволом, кустарники – со множеством веток, отходящих прямо от корня, полукустарники – как растения, которые дают от корня много стеблей и множество веточек. Травы он объединял в группы по длительности жизни, характеру побегов, листьев, корневых систем, наличию луковиц и клубней. Он отмечал зависимость формы роста от климата, почвы, способов возделывания. Группы жизненных форм служили Теофрасту, как и многим ботаникам нового времени, основой для систематики растений.