Метод оптической накачки обладает несколькими преимуществами. Во-первых, он применим для возбуждения сред с большой концентрацией частиц (твёрдые тела, жидкости). Во-вторых, этот метод возбуждения весьма селективен. Так, в рубине в основном поглощается только та часть спектра излучения ламп накачки, которая ответственна за возбуждение ионов Cr3+. Всё остальное излучение попадает в область прозрачности и поглощается относительно слабо. Поэтому отношение полной энергии, вложенной в единицу объёма рабочего вещества, к полезной энергии, затраченной на создание инверсной населённостей уровней, в основном определяется особенностями используемой системы уровней. Все остальные потери энергии сведены к минимуму. В рубине теряется лишь та часть энергии, которая идёт на возбуждение собственных колебаний кристаллической решётки в результате безызлучательных переходов (рис. 6, волнистые стрелки). Уменьшение паразитных потерь энергии существенно для уменьшения тепловых нагрузок вещества. Удельная энергия импульса генерации в твердотельных Л. достигает нескольких дж от каждого см3 вещества. Примерно столько же энергии остаётся в рабочем веществе. Для одноатомного газа при атмосферном давлении энергия в 1 дж соответствует температуре 10000 К. Для твёрдого тела, вследствие его большой теплоёмкости, выделение энергии ~ 1 дж/см3даёт нагрев на десятки градусов. Недостатком метода оптич. накачки является малый кпд. Отношение энергии импульса Л. к электрической энергии питания лампы-накачки в лучшем случае не превышает нескольких % из-за неполного использования спектра ламп накачки (~ 15%) и вследствие потерь на преобразование электрической энергии в световую в самих лампах.
Большое распространение получил метод создания активной среды непосредственно в электрическом разряде в различных газах. Возможности получения с помощью этого метода импульсов генерации большой энергии ограничиваются в основном малой плотностью рабочей среды; инверсию населённостей легче получить в сравнительно разреженных газах. Однако этот метод позволяет использовать в качестве активной среды Л. самые различные атомные и молекулярные газы и их смеси, а также различные типы электрических разрядов в газах. В результате оказалось возможным создать Л., работающие в инфракрасной, видимой и ультрафиолетовой областях спектра. Кроме того, возбуждение в электрическом разряде позволяет реализовать непрерывный режим работы Л. с большим кпд преобразования электрической энергии в энергию излучения Л. (см. Газовый лазер).
В наиболее мощном газоразрядном Л. непрерывного действия на смеси молекулярных газов CO2 и N2 (с добавлением ряда др. компонентов) механизм образования инверсии населённостей состоит в следующем: электроны газоразрядной плазмы, ускоряемые электрическим полем, при столкновениях возбуждают колебания молекул N2. Затем в результате столкновений возбуждённых молекул N2 с молекулами CO2 происходит заселение одного из колебательных уровней CO2, что и обеспечивает возникновение инверсии населённостей. Все стадии этого процесса оказываются очень эффективными, и кпд достигает 20—30%.
В дальнейшем оказалось возможным создать газодинамический лазер на смеси CO2 и N2, в котором газовая смесь нагревается до температуры Т ~ 2000 К, формируется сверхзвуковой поток, который, выходя из сопла, расширяется и тем самым быстро охлаждается. В результате быстрого охлаждения возникает инверсия населённостей рабочих уровней CO2 (см. Газодинамический лазер). Кпд преобразования тепловой энергии в излучение газодинамического Л. невелик (~ 1%). Тем не менее газодинамические Л. весьма перспективны, т. к., во-первых, в этом случае облегчается задача создания крупногабаритных Л. большой мощности и, во-вторых, при использовании тепловых источников энергии вопрос о кпд Л. стоит менее остро, чем в случае электроразрядных Л. При сжигании 1 г топлива (например, керосина) выделяется энергия порядка десятка тыс. дж, в то время как электрическая энергия, запасаемая в конденсаторах, питающих лампы вспышки, — порядка 0,1 дж на 1 см3 объёма конденсатора.
Т. к. химические связи молекул являются исключительно энергоёмким накопителем энергии, то перспективно непосредственное использование энергии химических связей для возбуждения частиц, т. е. создание активной среды Л. в результате химических реакций. Примером химической накачки является реакция водорода или дейтерия с фтором. Если в смеси H2 и F2 к.-л. образом диссоциировать небольшое кол-во молекул F2, то возникает цепная реакция F + H2 ® HF + H, H + F2 ® HF + F и т.д. Молекулы HF, образующиеся в результате этой реакции, находятся в возбуждённом состоянии, причём для ряда квантовых переходов выполняются условия инверсии населённостей. Если к исходной смеси добавить CO2, то, кроме Л. на переходах HF (l ~ 3 мкм), удаётся также создать Л. на переходах СО2 (l = 10,6 мкм). Здесь колебательно возбуждённые молекулы HF играют ту же роль, что и молекулы N2 в газоразрядных лазерах на CO2. Более эффективной в этом случае оказывается смесь D2, F2 и CO2. В этой смеси коэффициент преобразования химической энергии в энергию когерентного излучения может достигать 15%. Химические Л. могут работать как в импульсном, так и в непрерывном режимах; разработаны различные варианты химических Л., в том числе сходные с газодинамическими Л.
В полупроводниках активную среду оказалось возможным создавать различными способами: 1) инжекцией носителей тока через электронно-дырочный переход; 2) возбуждением электронным ударом; 3) оптическим возбуждением (см. Полупроводниковый лазер).
Твердотельные лазеры. Существует большое количество твердотельных Л., как импульсных, так и непрерывных. Наибольшее распространение среди импульсных получили Л. на рубине (см. выше) и неодимовом стекле (стекле с примесью Nd). Неодимовый Л. работает на длине волны l = 1,06 мкм. Оказалось возможным изготовлять сравнительно большие и достаточно оптически однородные стержни длиной до 100 см и диаметром 4—5 см. Один такой стержень способен дать импульс генерации с энергией 1000 дж за время ~ 10-3сек.
Л. на рубине, наряду с Л. на неодимовом стекле, являются наиболее мощными импульсными Л. Полная энергия импульса генерации достигает сотен дж при длительности импульса 10-3сек. Оказалось также возможным реализовать режим генерации импульсов с большой частотой повторения (до нескольких кгц).
Примером твердотельных Л. непрерывного действия являются Л. на флюорите кальция CaF2 с примесью диспрозия Dy и Л. на иттриево-алюминиевом гранате Y3Al5O12 с примесями различных редкоземельных атомов. Большинство таких Л. работает в области длин волн l от 1 до 3 мкм. Возможность реализации непрерывного режима в этих Л. обычно связана с тем, что нижним уровнем рабочего перехода является не основной уровень E1, а возбуждённый уровень E2 (рис. 7). Если уровень E2 достаточно далеко отстоит по энергии от основного уровня E1 (по сравнению с кТ, где к — Больцмана постоянная, Т — температура) и характеризуется достаточно малым временем жизни, то инверсия населённостей для уровней E2, E3 может быть создана с помощью сравнительно маломощных источников оптической накачки. У некоторых из таких Л. генерация осуществлена при накачке солнечным светом. Типичное значение мощности генерации твердотельных Л. в непрерывном режиме ~ 1 вт или долей вт, для Л. на иттриево-алюминиевом гранате ~ десятков вт. Если не принимать специальных мер, то спектр генерации твердотельных Л. сравнительно широк, т.к. обычно реализуется многомодовой режим генерации. Однако введением в оптический резонатор селектирующих элементов удаётся получать и одномодовую генерацию. Как правило, это связано со значительным уменьшением генерируемой мощности.