Литмир - Электронная Библиотека
Содержание  
A
A

  При просмотре голограмм можно менять не только длину опорной волны, но и её волновой фронт. Освещая, например, голограмму расходящейся сферической волной, можно наблюдать увеличенное изображение предмета. На этом основано устройство голографического микроскопа.

  Возможности Г. существенно расширяются, если голограмму записывать на толстослойной эмульсии, что было впервые предложено Ю.Н. Денисюком (СССР, 1962). В этом случае интерференционная картина получается трёхмерной, благодаря чему голограмма приобретает новые свойства. В частности, такая голограмма позволяет наблюдать изображение объекта при освещении её немонохроматическим (белым) светом.

  Можно получить цветное голографическое изображение предмета, если при изготовлении голограммы использовать 3 монохроматических лазера, излучающие разные длины волн (например, синий, жёлтый и красный лучи). В этом случае запись может производиться на обычную эмульсию, и голограмма по внешнему виду не будет отличаться от обычной черно-белой. Цветное изображение предмета наблюдается при одновременном освещении голограммы 3 опорными волнами, соответствующими указанным цветам.

  Качество голографических изображений зависит от монохроматичности излучения лазеров и разрешающей способности фотоматериалов, используемых при получении голограмм. Если спектр излучения лазера широкий, то при съёмке голограммы каждой определённой длине волны этого спектра будет соответствовать свой интерференционный узор и результирующая интерференционная картина будет нечёткой и размытой. Поэтому при изготовлении голограмм применяются лазеры с очень узкой спектральной линией излучения.

  Качество интерференционной картины определяется также разрешающей способностью фотоматериала, то есть числом интерференционных линий, которое можно фиксировать на 1 мм . Чем больше это число, тем лучше качество восстановленного изображения. В связи с этим в Г. применяются фотоматериалы, имеющие высокое разрешение (1000 линий на 1 мм и более).

  Наиболее часто используемые фотографические эмульсии представляют собой взвесь светочувствительных зёрен, расположенных на некотором расстоянии друг от друга. Дискретная структура фотоэмульсий приводит к тому, что на голограмме записывается не непрерывное распределение яркости интерференционной картины, а лишь её «отрывки». Это создаёт световой фон, поскольку при просвечивании голограммы свет рассеивается на проявленных зёрнах. В связи с этим ведутся широкие поиски беззернистых фотоматериалов, которые, кроме того, позволяли бы производить стирание и повторную запись информации, что очень важно для ряда голографических применений. Уже получены первые голограммы на мелкодоменных магнитных плёнках, фотохромных стеклах и плёнках, на кристаллах и на других материалах.

  На качество голографических изображений влияют также условия съёмки. При использовании лазеров непрерывного излучения время экспозиции меняется от долей секунды до десятков минут (в зависимости от размеров объекта и голограммы). В течение этого времени недопустимы какие-либо смещения объекта, фотопластинок и оптических элементов схемы на расстояния, сравнимые с длиной волны l. В противном случае интерференционная картина будет смазана. Эти трудности исключаются при использовании импульсных лазеров, обеспечивающих мощное световое излучение в течение очень коротких промежутков времени (до 10-9сек ). При таком малом времени экспозиции легко получать голограммы объектов, движущихся со скоростями порядка 1000 м/сек (рис. 8 ).

  Применение Г. Импульсная Г. открывает возможность фиксировать и анализировать быстро, протекающие процессы. Большой интерес, например, для ядерной физики и физики элементарных частиц представляет изучение следов (треков) частиц в трековых камерах. Для этой цели пока применяется стереоскопическая съёмка. Голографические методы оказываются здесь весьма эффективными, поскольку они позволяют зафиксировать информацию о всём объёме камеры. При восстановлении можно рассматривать изображение в различных сечениях камеры, что позволяет легко разделить треки, соответствующие разным частицам. Число частиц, регистрируемых на голограмме, может быть очень большим (порядка 1000). Аналогично можно изучать динамику распределения неоднородностей в туманах, жидкостях и других прозрачных средах.

  Перспективно применение импульсной Г. в интерферометрии. На одной и той же фотопластинке в различные моменты времени записываются 2 голограммы исследуемого объекта. При восстановлении обе волны, несущие информацию об объекте, накладываются друг на друга. Если за время между экспозициями с объектом произошли какие-либо изменения, то на восстановленном изображении появляется система интерференционных полос. Расшифровывая полученную интерференционную картину, можно определить происшедшие изменения. Этот метод позволяет измерять очень небольшие (порядка долей мкм ) деформации объектов со сложной формой поверхности, обусловленные вибрацией, нагреванием и т. п. Его можно использовать также для неразрушающего контроля изделий, для исследования взрывов , ударных волн , образующихся, например, при полёте пули (рис. 8 ), для изучения потоков газа в сверхзвуковом сопле, для исследования плазмы и т. д.

  Применение Г. открывает принципиальную возможность создания объёмного цветного телевидения . Действительно, голограмму объекта можно зафиксировать на светочувствительной поверхности передающей телевизионной трубки , а затем передать её по радио- или оптическому каналу. На приёмном конце голограмму можно восстановить, записав её, например, на светочувствительной плёнке. Это позволит наблюдать трёхмерное изображение объекта. Реализация такой системы даже для специальных применений пока связана с большими техническими трудностями (разрешающая способность телевизионных передающих трубок очень низка, что затрудняет восстановление объёмных изображений; отсутствуют достаточно мощные лазеры видимого диапазона, которые необходимы для получения голограмм реальных объектов, и т. п.).

  Методы Г. открывают возможность создания новых систем памяти, представляющих большой интерес для прогресса вычислительной техники . Г. позволяет реализовать плотность записи порядка 107 —108двоичных единиц информации на 1 см2 светочувствительной поверхности, что на несколько порядков выше, чем у существующих систем памяти. Кроме того, голографическая запись характеризуется высокой надёжностью; выход из строя небольших участков голограммы приводит лишь к некоторому ухудшению качества воспроизведения (см. выше). Голографические устройства памяти с большой ёмкостью были предложены в 1966 А. Л. Микаэляном и В. И. Бобриневым (СССР). Они основаны на записи большого числа голограмм на одну и ту же поверхность (или объём) фотоматериала. Для того чтобы изображения не накладывались друг на друга, при записи каждого из них изменяют угол падения опорной волны на светочувствительный слой (рис. 9 ). Опорный луч, прежде чем попасть на голограмму, проходит через отклоняющую систему, которая устанавливает направление опорного луча в соответствии с введённым в неё адресом. Каждому адресу соответствует своё направление опорного луча. Сигнальный луч делится на n каналов, в каждый из которых включен модулятор М. При наличии управляющего напряжения он пропускает луч лазера, а при отсутствии напряжения становится непрозрачным. На выходе модуляторов возникает комбинация n лучей, которые вместе с опорным лучом записываются в виде голограммы. При накоплении информации в запоминающем устройстве на адресный вход подаются поочерёдно все адреса, а на сигнальный — соответствующие числа.

  При считывании информации отклоняющая система устанавливает угол падения считывающего опорного луча, соответствующий заданному адресу, и голограмма формирует изображение в виде системы ярких точек, количество и взаимное расположение которых определяется комбинацией включенных при записи модуляторов. Это изображение проецируется на систему фотоприёмников, на выходе которых сигналы дают считанное число. Уже удалось записать последовательно до 1000 голограмм 32-разрядных чисел на участке поверхности с диаметром ок. 2 мм .

34
{"b":"105978","o":1}