Литмир - Электронная Библиотека
Содержание  
A
A

  Табл. 2. — Годовая выработка энергии на валу ветроколеса

vr , м/сек Tраб , ч Годовая выработка энергии Мвт-ч, при диаметрах ветроколеса, м
2 4 8 10 12 18 30
3 4 5 6 7 3500 5300 6500 7300 7800 0,3 0,7 1,1 1,5 1,8 1,2 2,7 4,3 6,0 7,5 4,8 10,8 17,2 23,8 29,7 7,5 16,8 26,6 36,7 45,5 10,7 24,0 38,0 53,0 66,0 23,8 52,0 85,0 116,0 142,0 66,3 145,0 230,0 315,0 403,0

  О применении В. и перспективах их развития см. в ст. Ветроэнергетика .

  Лит.: Фатеев Е. М., Ветродвигатели и ветроустановки, 2 изд., М., 1957; Перли С. Б., Быстроходные ветряные двигатели, М. — Л., 1951; Шефтер Я. И., Рождественский И. В., Ветронасосные и ветроэлектрические агрегаты, М., 1967.

  Я. И. Шефтер.

Большая Советская Энциклопедия (ВЕ) - i008-pictures-001-294460204.jpg

Рис. 3. Схема векторов аэродинамических сил и скоростей в сечении лопасти.

Большая Советская Энциклопедия (ВЕ) - i009-001-205280229.jpg

Рис. 7. Быстроходный ветродвигатель «Беркут-2» с электрическим генератором.

Большая Советская Энциклопедия (ВЕ) - i009-001-213592599.jpg

Рис. 1. Внешний вид рабочих органов ветродвигателя: а — карусельного; б — роторного; в — барабанного типа.

Большая Советская Энциклопедия (ВЕ) - i009-001-223463767.jpg

Рис. 2. Быстроходное ветроколесо: 1 — ступица; 2 — наконечник (мах); 3 — лопасть; 4 — подшипники; 5 — грузы регулятора.

Большая Советская Энциклопедия (ВЕ) - i009-001-233638082.jpg

Рис. 4. Тихоходное ветроколесо: 1 — ступица; 2 — лопасть; 3 — каркас; 4 — болты крепления лопасти.

Большая Советская Энциклопедия (ВЕ) - i010-001-263077733.jpg

Рис. 5. Зависимости значений относительных моментов

Большая Советская Энциклопедия (ВЕ) - i-images-187820168.png
 и коэффициента использования энергии ветра x от быстроходности Z при различном числе лопастей i ветроколеса.

Большая Советская Энциклопедия (ВЕ) - i010-001-285162449.jpg

Рис. 6. Ветродвигатель: а — типа Д-18 (1 — ветроколесо; 2 — верхний редуктор; 3 — виндроза; 4 — вертикальный вал; 5 — нижний редуктор; 6 — рабочая машина); б — с пневматическим приводом (1 — ветроколесо; 2 — компрессор).

Ветроколесо

Ветроколесо', рабочий орган ветродвигателя . Служит для преобразования кинетической энергии поступательно движущегося воздушного потока в механическую энергию вращения вала ветродвигателя.

  Я. И. Шефтер.

Ветроупорная опушка

Ветроупо'рная опу'шка, полоса леса шириной 20—30 м, предназначенная для защиты леса от ветровала . В. о. Закладывают, главным образом, из лиственных древесных пород с глубокой корневой системой, способных развивать мощную крону, и располагают перпендикулярно господствующим ветрам. В. о. формируют путём сильного изреживания молодых деревьев. Это способствует образованию мощной разветвленной кроны, способной отражать порывы ветра. Между деревьями высаживают лиственные кустарники.

Большая Советская Энциклопедия (ВЕ) - i009-001-234326910.jpg

Схема ветроупорной опушки: А — направление господствующих ветров; В — ветроупорная опушка; С — защищаемое от ветра еловое насаждение.

Ветроустойчивые породы

Ветроусто'йчивые поро'ды, древесные породы с глубокой и разветвленной корневой системой и крепким стволом, хорошо противостоящие бурям и ураганам и не подверженные ветровалу . К В. п. относят дуб, сибирский кедр, эвкалипты, секвойю и др. Ветроустойчивость деревьев связана с условиями произрастания. На глубоких, относительно рыхлых и хорошо дренированных почвах, при низком уровне грунтовых вод и у редко стоящих молодых деревьев формируется более глубокая и разветвленная корневая система; на мелких каменистых, на тяжёлых заболоченных почвах, на песчаных почвах при высоком уровне грунтовых вод, а также при неглубоком расположении многолетнемёрзлых горных пород — поверхностно-разветвленная. Повышают ветроустойчивость также ветроупорные опушки . Ср. Ветровальные породы .

Ветроэлектрическая станция

Ветроэлектри'ческая ста'нция, ветроэнергетическая установка, преобразующая кинетическую энергию ветрового потока в электрическую. В. с. состоит из ветродвигателя , генератора электрического тока, автоматических устройств управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания. В большинстве случаев В. с. пользуются как источником электроэнергии относительно небольшой мощности в местах, характеризующихся хорошим ветровым режимом (среднегодовая скорость ветра превышает 5 м/сек ) и удалённых от сетей централизованного электроснабжения (Арктика, прибрежные зоны Каспийского и Охотского морей, степи, пустыни и полупустыни). Наиболее перспективно применение В. с. в сельском хозяйстве.

  Первая в мире В. с. мощностью 8 квтс инерционным аккумулятором построена в 1929—30 в СССР (в г. Курске) по проекту советского изобретателя А. Г. Уфимцева и профессора В. П. Ветчинкина. В 1931 была сооружена В. с. мощностью 100 квт для параллельной работы с мощной тепловой электростанцией, питающей электроэнергией г. Севастополь. В 50-х гг. 20 в. было построено несколько В. с. мощностью 30 квтс тепловым резервом, а также многоагрегатная В. с. мощностью 400 квт (в Казахстане), состоящая из 12 установок, работающих параллельно с дизельной электростанцией. Во Франции эксплуатируется В. с. мощностью 640 квт. Наиболее мощная (1,25 Мвт ) В. с. построена в США. Самые малые В. с. имеют мощность 100 вт. Во всём мире насчитывается более 70 тыс. В. с. (по данным ЮНЕСКО на 1967).

  В. с. малой (до 3 квт ) мощности (рис. 1 ) имеют генераторы постоянного или переменного тока и работают с батареями электрохимических аккумуляторов, которые не только запасают энергию на периоды безветрия, но и сглаживают пульсации напряжения. В. с. средней (рис. 2 ) и большой мощности вырабатывают переменный ток. При изолированной работе для улучшения качества энергии и её кратковременного аккумулирования В. с. снабжают инерционными аккумуляторами и электрическими регуляторами напряжения. Наиболее эффективно применение В. с. совместно с тепловым (дублирующим) двигателем или параллельно с не ветровой электростанцией.

  В широко распространённых В. с. быстроходное ветроколесо соединено через повышающий 2—3-ступенчатый редуктор с генератором, все основные механизмы расположены в головке, а энергия от генератора передаётся потребителю по электрическому кабелю; электрическая аппаратура управления обычно располагается в помещении, находящемся рядом с башней. Такие В. с. требуют меньше металла, но они создают некоторые неудобства в эксплуатации. Реже встречаются В. с. с 2 редукторами (верхним и нижним), соединёнными вертикальной механической передачей. В этом случае генератор располагается внизу, в помещении. В таких В. с. проще обслуживание и ремонт оборудования, но кпд их меньше из-за расхода части энергии на трение в дополнительных элементах механической передачи. Применяют также В. с. с пневматической передачей мощности, предложенной французским инженером И. Андро. В этой В. с. быстроходное ветроколесо имеет полые лопасти, через каналы которых при вращении с большой скоростью выбрасывается воздух. В башне создаётся разрежение, и перемещением воздуха, засасываемого из атмосферы, приводится во вращение воздушная турбина, соединённая с генератором. Такая В. с. имеет малые перегрузки, требует меньше металла, чем обычные В. с., надёжна в эксплуатации, но конструктивно более сложна и имеет меньший кпд. Для надёжного ограничения мощности во время больших скоростей ветра (бурь), поддержания постоянства частоты вращения и напряжения генератора применяют сложные автоматические системы аэродинамического и электрического регулирования параметров В. с. (см. Ветродвигатель ), а также автоматически управляемую бесступенчатую (фрикционную) передачу от ветродвигателя к генератору. Такая бесступенчатая передача установлена на В. с. типа Д-12, построенной в СССР в 1957. При параллельной работе применяют устройства, ограничивающие перегрузки (асинхронные муфты скольжения и др.).

257
{"b":"105938","o":1}